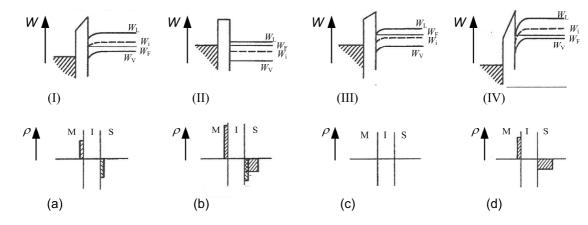

WS 2014/2015 Ausgabe am: 06.02.2015

Übungsblatt 14

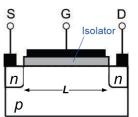
Aufgabe 1: Bipolartransistor



Betrachtet wird ein pnp-Transistor aus Silizium. Die Dotierungen von Emitter, Basis und Kollektor betragen $n_{AE} = 1 \cdot 10^{19}$ cm⁻³, $n_{DB} = 2 \cdot 10^{17}$ cm⁻³, $n_{AC} = 5 \cdot 10^{15}$ cm⁻³. Die zugehörigen physikalischen Längen betragen $(x_1 - x_0) = 1$ µm, $(x_2 - x_1) = 0.2$ µm, $(x_3 - x_2) = 3$ µm. Gehen Sie im Folgenden davon aus, dass die Schottky-Näherung gilt, Störstellenerschöpfung vorliegt und die Temperatur T = 300 K beträgt. Die intrinsische Ladungsträgerdichte beträgt $n_i = 1.5 \cdot 10^{10}$ cm⁻³.

- 1.1 Skizzieren Sie den Verlauf von Valenzband, Leitungsband und Fermi-Niveau für eine Basis-Emitter-Spannung $U_{\rm BE}=0$ V und eine Basis-Kollektor-Spannung $U_{\rm BC}=0$ V. Markieren Sie die Raumladungszonen.
- 1.2 Nun wird eine Basis-Emitter-Spannung $U_{\rm BE}$ = -0,7 V und eine Basis-Kollektor Spannung $U_{\rm BC}$ = 0,8 V angelegt.
 - (a) Werden die Übergänge dabei jeweils in Sperr- oder Durchlassrichtung gepolt? Welcher Betriebszustand des Transistors ergibt sich?
 - (b) Werden die Raumladungszonen kleiner oder größer im Vergleich zu $U_{\rm BE} = U_{\rm BC} = 0$?
 - (c) Skizzieren und beschriften Sie die Bandverläufe, sowie die Quasi-Fermi-Niveaus.
 - (d) Skizzieren und beschriften Sie den Verlauf der Trägerdichten außerhalb der Raumladungszonen.

Aufgabe 2: MOSFET und MIS-Struktur


2.1 Im Folgenden sind vier verschiedene Metall-Isolator-Halbleiter-(MIS-)Strukturen skizziert. Ordnen Sie den Bandverläufen (I) bis (IV) die Ladungsträgerverteilungen (a) bis (d) zu. Bestimmen Sie dabei, welche Dotierung (n oder p) im Halbleiter vorliegt. W_F bezeichnet die Fermi-Energie, W_i die Mitte der Bandlücke.

2.2 Ordnen Sie die gezeigten Bandverläufe den folgenden Betriebszuständen der MIS-Struktur zu: Verarmung, Anreicherung, starke Inversion, Flachbandfall.

1

Bei einem *n*-Kanal MOSFET beträgt die Kanallänge $L = 2 \,\mu\text{m}$, die Kanalbreite $b = 15 \,\mu\text{m}$ (senkrecht zur Zeichenebene), und der Kapazitätsbelag des Gates wird mit $C' = 6.9 \cdot 10^{-8} \,\text{F/cm}^2$ angegeben.

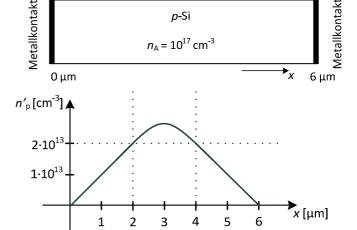
Für eine Drain-Source-Spannung von $U_{\rm DS}$ = 0,1 V werden im ohmschen Bereich die folgenden Drainströme $I_{\rm D}$ gemessen:

Arbeitspunkt 1: $U_{GS} = 1.5 \text{ V}$, $I_D = 35 \mu\text{A}$;

Arbeitspunkt 2: $U_{GS} = 2.5 \text{ V}$, $I_D = 75 \mu\text{A}$.

- 2.3 Berechnen Sie für den oben beschriebenen MOSFET die Schwellenspannung $U_{\rm th}$ und die Elektronenbeweglichkeit $\mu_{\rm n}$ im Kanal.
- 2.4 An das oben beschriebene Bauteil wird eine Gate-Source-Spannung von $U_{GS} = 2,5$ V angelegt. Berechnen Sie die Drain-Source-Spannung, bei welcher der Sättigungsbereich beginnt, sowie den Sättigungsstrom.

Aufgabe 3: Beleuchtete Halbleiterprobe


Eine $6 \,\mu m$ lange Siliziumprobe ist an beiden Enden metallisiert. Eine externe Spannung ist nicht angelegt. Die Probe wird räumlich inhomogen in einer Weise beleuchtet, dass die stationäre Überschussminoritätsträgerdichte $n'_p(x)$ den folgenden Verlauf zeigt:

$$n'_{p}(x) = \begin{cases} 10^{25} \text{ m}^{-4}x & \text{für } 0 \text{ } \mu\text{m} \le x \le 2 \text{ } \mu\text{m} \\ 2,5 \cdot 10^{19} \text{ m}^{-3} - 0,5 \cdot 10^{31} \text{ m}^{-5} (x - 3 \text{ } \mu\text{m})^{2} & \text{für } 2 \text{ } \mu\text{m} < x \le 4 \text{ } \mu\text{m} \\ 10^{25} \text{ m}^{-4} (6 \text{ } \mu\text{m} - x) & \text{für } 4 \text{ } \mu\text{m} < x \le 6 \text{ } \mu\text{m} \\ 0 & \text{sonst} \end{cases}$$

Die Probe ist *p*-dotiert mit einer Dichte von $n_A = 10^{17} \text{ cm}^{-3}$. Die Beweglichkeit der

Elektronen ist $\mu_n = 1600 \frac{\text{cm}^2}{\text{Vs}}$, die der Löcher

 $\mu_{\rm p} = 800 \, \frac{{\rm cm}^2}{{\rm Vs}}$. Die Eigenleitungsträgerdichte ist $n_{\rm i} = 10^{10} \, {\rm cm}^{-3}$ und die Diffusionslänge der Minoritätsträger beträgt $L_{\rm h} = 60 \, {\rm \mu m}$. Nehmen Sie für alle Berechnungen schwache Injektion an und gehen Sie davon aus, dass sich die Probe im stationären Zustand befindet. Die Temperatur beträgt $T = 300 \, {\rm K}$ und es liegt Störstellenerschöpfung vor.

- 3.1 Berechnen Sie die Diffusionskonstanten D_n und D_p sowie die Minoritätsträgerlebensdauer τ_n des Halbleiters.
- 3.2 Berechnen Sie den Verlauf der Minoritätsträgerstromdichte $J_n(x)$ im Intervall $0 < x < 6 \,\mu\text{m}$ und skizzieren Sie den Verlauf. Verwenden Sie dabei sinnvolle Näherungen und begründen Sie Ihr Vorgehen.
- 3.3 Welche Überschussmajoritätsträgerdichte $p'_p(x)$ und Majoritätsträgerstromdichte $J_p(x)$ stellen sich im stationären Zustand ein? Verwenden Sie sinnvolle Näherungen und begründen Sie Ihr Vorgehen. (2,5 Punkte)
- 3.4 Berechnen Sie den Verlauf der Generationsfunktion $g_L(x)$ im Intervall $0 < x < 6 \,\mu\text{m}$ unter Vernachlässigung der Rekombination im Volumen des Halbleiters. Gehen Sie davon aus, dass sich die Probe nach wie vor im stationären Zustand befindet.