WS 2015/2016 Ausgabe am: 25.01.2016

Übungsblatt 13

Aufgabe 1) MIS-Struktur

Eine MIS-Struktur besteht aus einem Metall, einem raumladungsfreien Isolator der Dicke $d_{\rm I}=50\,{\rm nm}$ und einem Halbleiter. Der Halbleiter sei n-dotiert mit $n_{\rm D}=5\times10^{16}\,{\rm cm}^{-3}$. Die intrinsische Ladungsträgerdichte betrage ni = $1.5\times10^{10}\,{\rm cm}^{-3}$ und der Bandabstand sei $W_{\rm G}=1.1\,{\rm eV}$. Gehen Sie von Störstellenerschöpfung und Raumtemperatur aus. Die Elektronenaffinitäten von Halbleiter und Isolator weisen eine Differenz von $W_{\chi,{\rm HL}}$ - $W_{\chi,{\rm Isolator}}=2\,{\rm eV}$ auf. Die Differenz der Elektronenaffinität des Isolators und der Austrittsarbeit des Metalls beträgt $W_{\phi,{\rm Metall}}$ - $W_{\chi,{\rm Isolator}}=1\,{\rm eV}$. Im Folgenden bezeichnen $x=x_{\rm M,I}$ und $x=x_{\rm I,HL}=d_{\rm I}$ die Grenzflächen zwischen Metall und Isolator bzw. zwischen Isolator und Halbleiter, siehe untenstehende Grafik.

- a) Skizzieren Sie die Bandverläufe im sogenannten Flachbandfall bei dem weder im Metall noch im Halbleiter Oberflächenladungen auftreten und daher alle Bänder flach verlaufen. Nutzen Sie hierzu die untenstehende Zeichnung.
- b) Berechnen Sie die Spannung $U_{\rm MH} = U_{\rm FB}$, die über einen äußeren Stromkreis zwischen Metall und Halbleiter angelegt werden muss, um den Flachbandfall zu erreichen. Gehen Sie davon aus, dass die äquivalenten Zustandsdichten von Leitungs- und Valenzband des Halbleiters gleich groß sind, $N_{\rm L} = N_{\rm V}$.
- c) Nun werden Metall und Halbleiter über den äußeren Stromkreis kurzgeschlossen, $U_{\rm MH}=0$. In diesem Fall sei der Halbleiter am Übergang zum Isolator eigenleitend, d.h. $n(x_{\rm I-HL})=n_{\rm i}$. Wie groß ist die Potentialdifferenz $\varphi_{\rm H}=\varphi(x_{\rm I-HL})-\varphi(x\to\infty)$ zwischen dem ungestörten HL und der Grenzfläche zum Isolator? Skizzieren Sie die Bandverläufe im thermischen Gleichgewicht in die untenstehende Zeichnung.

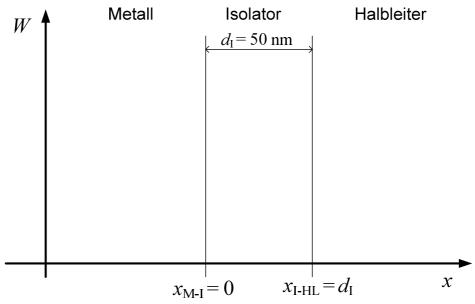


Fig. 1: MIS Struktur im Flachbandfall

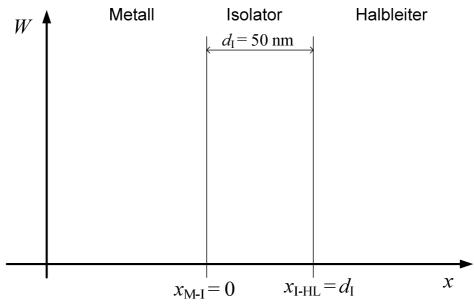


Fig. 2: MIS Struktur im thermischen Gleichgewicht

Aufgabe 2) MOSFET

Ein n-Kanal MOSFET weist eine Kanallänge von $L = 2 \,\mu\text{m}$ und eine Kanalweite von $b = 30 \,\mu\text{m}$ auf. Die Einsatzspannung beträgt $U_{\text{th}} = 1,4 \,\text{V}$; die Elektronenbeweglichkeit μ_{n} im Inversionskanal beläuft sich auf 600 cm²/(Vs). Die relative Dielektrizitätszahl des Gate-Oxids beträgt $\varepsilon_r = 3,9$.

- a) Skizzieren Sie einen Querschnitt durch den MOSFET, tragen Sie die Dotierungen ein und beschriften Sie die für die Funktion relevanten Elemente. Skizzieren Sie das Ausgangskennlinienfeld, d.h. den Drainstrom $I_{\rm D}$ als Funktion der Drain-Source Spannung $U_{\rm DS}$ mit der Gate-Source Spannung $U_{\rm GS}$ als Parameter.
- b) Berechnen Sie die Dicke d des Gate Oxids, für die der MOSFET bei $U_{\rm DS}=3$ V und $U_{\rm GS}=6$ V den Kleinsignalwiderstand $r_{\rm DS}=100~\Omega$ zwischen Source und Drain annimmt. Wie muss die Dicke d angepasst werden, um bei einer Drain-Source Spannung von $U_{\rm DS}=4$ V, bzw. $U_{\rm DS}=5$ V den gleichen Kleinsignalwiderstand zu erhalten?

<u>Diese Übung</u> findet am Freitag, 05.02.2016 um 14:00 Uhr für alle Teilnehmer gemeinsam im NTI-Hörsaal statt. Im Anschluss findet eine Laborführung durch das IPQ statt (Dauer ca. 1,5 h). Es gibt Kaffee und Kuchen!

<u>Am Freitag</u>, den 12.02.2016 findet um 14.00 Uhr eine Fragestunde im NTI Hörsaal statt. Fragen können Sie vorher per E-Mail an <u>tobias.harter@kit.edu</u>, <u>s.wolf@kit.edu</u> oder <u>sascha.muehlbrandt@kit.edu</u> senden.