Prof. Dr. Guido Schneider Dipl.-Math. Oliver Zink

Dipl.-Math. oec. Norbert Breindl

Lösungsvorschläge zum 9. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie

- **Aufgabe 1** Wir betrachten jeweils die Reihe $\sum\limits_{k=0}^{\infty}a_k$ a) Mit $a_k=\left\{\begin{array}{cc} \frac{1}{k+1} & \text{falls} & k\leq 1777\\ \frac{1}{2^k} & \text{falls} & k>1777 \end{array}\right.$ haben wir für k>1777 mit $\sum\limits_{k=1}^{\infty}\frac{1}{k^2}$ eine Majorante und somit Konvergenz. Für $k\leq 1777$ haben wir nur eine endliche Summe, was an der Konvergenz von $\sum\limits_{k=0}^{\infty}a_k$ nichts ändert.
- **b)** Mit $a_k = \begin{cases} \frac{1}{k+1} & \text{falls} \quad k \text{ gerade} \\ \frac{1}{2^k} & \text{falls} \quad k \text{ ungerade} \end{cases}$ haben wir mit der Abschätzung $a_k = \frac{1}{k+1} > \frac{1}{2^k}$ für k gerade eine Minorante $\sum_{n=1}^{\infty} \frac{1}{4n} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}$ gefunden. Wie in a) ergibt sich für die Reihe für k ungerade zwar Konvergenz, dies ändert aber nichts an der Divergenz für alle k. Die Reihe $\sum_{k=0}^{\infty} a_k$ ist somit insgesamt divergent.
- c) Mit $a_k = \begin{cases} \frac{1}{k^{16}} & \text{falls} & k \neq 12 \\ k & \text{falls} & k = 12 \end{cases}$ erhalten wir Konvergenz mit dem Integralvergleichskriterium. Es gilt $\int_{13}^{\infty} \frac{1}{k^{16}} = \frac{k^{-15}}{-15} \Big|_{13}^{\infty} = \frac{1}{15 \cdot 13^{15}} < \infty$ und die ersten 12 Glieder sind lediglich endlich.
- **Aufgabe 2** a) Da $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion ist sind Urbilder von abgeschlossenen Mengen wieder abgeschlossen. Da die Menge $\{0\}$ abgeschlossen in \mathbb{R} ist, ist das Urbild $f^{-1}(\{0\}) = A$ ebenfalls abgeschlossen in \mathbb{R} .
- b) Dies gilt zum Beispiel nicht für folgende unstetige Funktion $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} 0, & x \in]0, 1[\\ 1, & \text{sonst}, \end{cases}$$

da das Urbild $f^{-1}(\{0\}) =]0,1[$ nicht abgeschlossen in \mathbb{R} .

Aufgabe 3 Es ist $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \begin{cases} 2 - x^2, & |x| \le 2 \\ -\frac{4}{|x|}, & |x| > 2. \end{cases}$ 1 Fall: x < -2 und x > 2. Hier ist $f(x) = -\frac{4}{|x|}$ eine stetige Funktion (Nenner $\neq 0$). 2. Fall: -2 < x < 2. Hier ist $f(x) = 2 - x^2$ eine stetige Funktion (Polynom). 3. Fall: x = -2. Hier ist $\lim_{x \to -2^-} (-\frac{4}{|x|}) = -2$, $\lim_{x \to -2^+} (2 - x^2) = -2$ und f(-2) = -2 $\implies f$ stetig in x = -2. 4. Fall: x = 2. Hier ist $\lim_{x \to -2^+} (2 - x^2) = -2$ $\lim_{x \to -2^+} (-\frac{4}{|x|}) = -2$ $\lim_{x \to -2^+} (-\frac{4}{|x|}) = -2$

4. Fall: x = 2. Hier ist $\lim_{x \to 2^{-}} (2 - x^{2}) = -2$, $\lim_{x \to -2^{+}} (-\frac{4}{|x|}) = -2$ und f(2) = -2 $\implies f$ stetig in x = 2.

Die Funktion f somit stetig auf ganz \mathbb{R} .

Aufgabe 4 a)+b) Auf dem Defintionsbereich ist die Funktion natürlich stetig. Wir bestimmen uns zunächst die Defintionsmenge $D \subset \mathbb{R}$ von

 $f:D\to\mathbb{R},\ f(x)=\frac{3x^4-8x^3+2x^2-3x+6}{x^4+3x^2-4}+\frac{5}{x^4+x^2+1}.$ Wir untersuchen den Nenner auf Nullstellen und erhalten 2 Nullstellen: ± 1 , und somit $D=\mathbb{R}\setminus\{-1,1\}$. Der zweite Bruch enthält keine Nullstellen. Der Nenner des ersten Bruchs faktorisiert ist somit $(x-1)(x+1)(x^2+4)$. Auch der Zähler hat x=1 als Nullstelle, wir können somit den Faktor (x-1) abspalten und erhalten als gekürzten Bruch $g(x)=\frac{3x^3-5x^2-3x-6}{x^3+x^2+4x+4}+\frac{5}{x^4+x^2+1}$ und haben somit f bei x=1 stetig ergänzt. Es bleibt noch die Stelle x=-1 zu untersuchen. Die Funktion f kann für f0 für f1 incht stetig fortgesetzt werden, da links- und rechtsseitiger Grenzwert nicht existieren. Die Funktion f3 ist somit stetig auf f3 f4 f5.

Aufgabe 5 a) Die Folge (a_n) ist konvergent gegen 0 und hat somit als einzigen Häufungspunkt 0. Es gilt $-\frac{1}{n} \le \frac{1}{n} \sin \frac{1}{n} \le \frac{1}{n}$ und somit $0 = \lim_{n \to \infty} -\frac{1}{n} \le \lim_{n \to \infty} \frac{1}{n} \sin \frac{1}{n} \le \lim_{n \to \infty} \frac{1}{n} = 0$ b) Die Häufungspunkte der Menge M sind: $H = \{\sin x | x \in [0,1]\}$

Aufgabe T1 Wir betrachten jeweils die Reihe $\sum_{k=0}^{\infty} a_k$

a) Mit $a_k = \begin{cases} \frac{1}{k^2 + 1} & \text{falls} \quad k \text{ ungerade} \\ \frac{k}{k^3 + 17} & \text{falls} \quad k \text{ gerade} \end{cases}$ haben wir mit der Abschätzung $a_k = \frac{1}{k^2 + 1} < \frac{1}{k^2}$

für k ungerade, also $k=2n-1,\,n\in\mathbb{N}$ mit $\sum\limits_{n=1}^{\infty}\frac{1}{(2n-1)^2}$ eine konvergente Majorante gefunden. Für k gerade, also $k=2n,\,n\in\mathbb{N}$ machen wir die Abschätzung $a_k=\frac{k}{k^3+17}<\frac{k}{k^3}<\frac{1}{k^2}$ und haben mit $\sum\limits_{n=1}^{\infty}\frac{1}{(2n)^2}$ ebenfalls eine konvergente Majorante gefunden.

b) Mit $a_k = \begin{cases} (-1)^k \frac{1}{k+1} & \text{falls} & k \text{ gerade} \\ 2^{-k} & \text{falls} & k \text{ ungerade} \end{cases}$ haben wir für k gerade mit der Abschätzung $a_k = (-1)^k \frac{1}{k+1} = \frac{1}{k+1} > \frac{1}{2k}$ eine Minorante $\sum_{n=1}^{\infty} \frac{1}{4n} = \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}$ gefunden. Die Reihe für k ungerade ist zwar konvergent, dies ändert aber nichts an der Divergenz für alle k. Die Reihe $\sum_{k=0}^{\infty} a_k$ ist somit insgesamt divergent.

c) Mit $a_k = \begin{cases} (-1)^{\frac{k}{2}} \frac{1}{\sqrt{k+1}} & \text{falls} \quad k \text{ gerade} \\ 2^{-k} & \text{falls} \quad k \text{ ungerade} \end{cases}$ haben wir für k gerade, also k = 2n

mit $a_n = (-1)^n \frac{1}{\sqrt{2n+1}}$ Konvergenz nach Leibniz, denn $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{\sqrt{2n+1}} = 0$, $a_n \ge 0$ und (a_n) ist monoton fallend,

$$a_n \ge a_{n+1} \Longrightarrow \frac{1}{\sqrt{2n+1}} \ge \frac{1}{\sqrt{2n+3}} \Longleftrightarrow \sqrt{2n+3} \ge \sqrt{2n+1} \Longleftrightarrow 3 \ge 1.$$

Für k ungerade, also $k=2n-1, n\in\mathbb{N}$ erhalten wir mit der Abschätzung $a_k=\frac{1}{2^k}<\frac{1}{k^2}$ mit $\sum_{n=1}^{\infty}\frac{1}{(2n-1)^2}$ eine Majorante und somit Konvergenz. Die Reihe $\sum_{k=0}^{\infty}a_k$ ist somit insgesamt konvergent.

Aufgabe T2 Die alternierenden Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ mit $a_n := b_n = (-1)^n \frac{1}{\sqrt{n+1}}$ konvergieren nach Leibniz Kriterium.

Folge $(a_n) = \frac{1}{\sqrt{n+1}}$ ist Nullfolge, ist klar. Zu zeigen ist noch (a_n) monoton fallend, es gilt

$$a_n - a_{n+1} \ge 0 \iff \frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n+2}} \ge 0 \iff \frac{1}{\sqrt{n+1}} \ge \frac{1}{\sqrt{n+2}}$$

 $\iff n+2 \ge n+1 \iff 2 \ge 1.$

Die Folgenglieder a_n sind auch alle positiv, $\frac{1}{\sqrt{n+1}} > 0$.

Das Cauchyprodukt $\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{n-k} b_k$ hat die Terme

$$c_n = \sum_{k=0}^{n} \frac{(-1)^{n-k}}{\sqrt{n-k+1}} \cdot \frac{(-1)^k}{\sqrt{k+1}} = \sum_{k=0}^{n} \frac{(-1)^n}{\sqrt{(n-k+1)(k+1)}}$$

und kann wie folgt abgeschätzt werden

$$\frac{1}{\sqrt{n-k+1}\sqrt{k+1}} \ge \frac{1}{\sqrt{n+1}\sqrt{n+1}} = \frac{1}{n+1}.$$

Es ist somit $\sum_{k=0}^{n} \frac{1}{\sqrt{n-k+1}\sqrt{k+1}} > \sum_{k=0}^{n} \frac{1}{n+1} = (n+1)\frac{1}{n+1} = 1$. Die Reihe $\sum_{n=0}^{\infty} c_n$ konvergiert nicht.

Aufgabe T3 a) Die Funktion f(x) ist stetig auf \mathbb{R}^+ (Kompositionen stetiger Funktionen sowie Wurzelfunktion sind stetig). Der Grenzwert existiert nicht, denn für $x \to 0$ konvergiert der Zähler gegen 2, und der Nenner gegen 0 und es gilt $\lim_{n\to\infty} = \frac{1+e^{x^2}}{\sqrt{x}} = \infty$. Eine stetige Fortsetzung somit nicht möglich.

b) Die Funktion g(x) ist stetig auf $\mathbb{R}\setminus\{0\}$, da der Bruch nur aus Polynomen besteht und der Nenner immer ungleich Null ist.

1. Fall:
$$x < 0$$
. Der Grenzwert $\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{|x^3|}{x^2} = \lim_{x \to 0} \frac{-x^3}{x^2} = \lim_{x \to 0} -x = 0$

2. Fall:
$$x > 0$$
. Der Grenzwert $\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{|x^3|}{x^2} = \lim_{x \to 0} \frac{x^3}{x^2} = \lim_{x \to 0} x = 0$.

1.Fall: x < 0. Der Grenzwert $\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{|x^3|}{x^2} = \lim_{x \to 0} \frac{-x^3}{x^2} = \lim_{x \to 0} -x = 0$, 2.Fall: x > 0. Der Grenzwert $\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{|x^3|}{x^2} = \lim_{x \to 0} \frac{x^3}{x^2} = \lim_{x \to 0} x = 0$. Da links- und rechtsseitiger Grenzwert existieren, existiert auch der Grenzwert $\lim_{x \to 0} \frac{|x^3|}{x^2} = 0$. Um nun eine stetige Fortsetzung $\tilde{g}:\mathbb{R}\to\mathbb{R}$ zu erhalten können wir $g(0):=\lim_{x\to 0}\frac{|x^3|}{x^2}=0$

- c) 1. Fall: Sei $(x_n) \in \mathbb{Q}$ mit $\lim_{n \to \infty} x_n = x$, so ergibt sich eine konstante Folge $h(x_n)$ mit $\lim h(x_n) = 1.$
- 2. Fall: Sei $(x_n) \notin \mathbb{Q}$ mit $\lim_{n \to \infty} x_n = x$, so ergibt sich eine konstante Folge $h(x_n)$ mit $\lim h(x_n) = 0.$
- 3. Fall: Sei $(x_n) \in \mathbb{R}$ mit unendlich vielen Folgengliedern $x_n \in \mathbb{Q}$ und unendlich vielen Folgengliedern $x_n \in \mathbb{Q}$ gengliedern $x_n \notin \mathbb{Q}$ mit $\lim_{n\to\infty} x_n = x$, so ergibt sich eine Folge $h(x_n)$ mit 2 Häufungspunkten 0 und 1.
- 4. Fall: Sei $(x_n) \in \mathbb{R}$, wobei entweder endlich viele Folgenglieder $x_n \in \mathbb{Q}$ und unendlich viele Folgenglieder $x_n \notin \mathbb{Q}$ sind, bzw. umgekehrt, so ergibt sich Fall 2 bzw. Fall 1.

Nach Fall 3 existieren Folgen mit 2 verschiedenen Häufungpunkten. Einen Grenzwert in 0 kann es somit nicht geben. Da die Funktion h(x) nirgends stetig ist, existiert auch keine stetige Fortsetzung.

Aufgabe T4 a) Sei $f: \mathbb{R} \to \mathbb{R}$

setzen.

$$f(x) = \begin{cases} \frac{1}{x} & \text{für } x < 0 \\ x & \text{für } x \ge 0 \end{cases}$$

b) Dies ist erfüllt für $f: \mathbb{R} \to \mathbb{R}, f(x) = 0, z.B.$ $f([0,1]) = \{0\}.$ Die 0 als Intervall mit gleichen Anfangs-und Endpunkt ist beschränkt und abgeschlossen.

3