WS 2004/2005 29.10.2004

Dr. A. Müller-Rettkowski Dipl.-Math. oec. N. Breindl

Lösung zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie

a) Definitionsbereich $D_i \subseteq \mathbb{R}$:

Der Ausdruck $f_1(x) = \frac{1}{x-1}$ ist überall da definiert, wo der Nenner nicht verschwindet, also $D_1 = \mathbb{R} \setminus \{1\}.$

Für $f_2(x) = \frac{x+1}{x-1}$ ist ebenfalls $D_2 = \mathbb{R} \setminus \{1\}$. Polynome wie $f_3(x) = x^2 + x + 1$ sind auf ganz \mathbb{R} definiert, daher $D_3 = \mathbb{R}$.

Bildmenge $R(f_i) = f(D_i)$:

Hierzu ist es zweckmäßig, die Abbildungen aus elementaren Abbildungen zusammenzusetzen. Seien

$$s \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ x \mapsto \frac{1}{x}, \quad t \colon \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{0\}, \ x \mapsto x - 1.$$

Die Zerlegung

$$f_1 = s \circ t$$
,

ist erlaubt, da $R(t) = \mathbb{R} \setminus \{0\}$ und s hierauf definiert ist. Beachte, dass auch Ausgangsund Zielmengen beider Seiten übereinstimmen! Das Bild $R(f_1)$ berechnen wir dann:

$$R(f_1) = f_1(\mathbb{R} \setminus \{1\}) = s(t(\mathbb{R} \setminus \{1\})) = s(\mathbb{R} \setminus \{0\}) = \mathbb{R} \setminus \{0\}.$$

Für $f_2(x) = \frac{x+1}{x-1}$ ist folgende Umformung sehr hilfreich:

$$\frac{x+1}{x-1} = \frac{x-1+2}{x-1} = 1+2 \cdot \frac{1}{x-1}.$$

Mit

$$q: \mathbb{R} \to \mathbb{R}, x \mapsto 1 + x, \quad r: \mathbb{R} \to \mathbb{R}, x \mapsto 2 \cdot x,$$

ist die Zerlegung

$$f_2 = q \circ r \circ s \circ t$$
,

erlaubt. Beachte auch hier, dass Ausgangs- und Zielmengen übereinstimmen. Das Bild ist

$$R(f_2) = f_2(\mathbb{R} \setminus \{1\}) = q \circ r \circ s(\mathbb{R} \setminus \{0\}) = q \circ r(\mathbb{R} \setminus \{0\}) = q(\mathbb{R} \setminus \{0\})$$
$$= \mathbb{R} \setminus \{1\}.$$

Bei $f_3 = x^2 + x + 1$ ist eine quadratische Ergänzung günstig:

$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}.$$

Mit

$$u \colon \mathbb{R} \to \mathbb{R}, \ x \mapsto x + \frac{3}{4}, \quad v \colon \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2, \quad w \colon \mathbb{R} \to \mathbb{R}, \ x \mapsto x + \frac{1}{2},$$

ist

$$f_3 = u \circ v \circ w,$$

und das Bild ist

$$R(f_3) = u \circ v \circ w(\mathbb{R}) = u(v(\mathbb{R})) = u(\{x \in \mathbb{R} \mid x \geqslant 0\}) = \{x \in \mathbb{R} \mid x \geqslant \frac{3}{4}\}.$$

b) Alle der elementaren Abbildungen außer v sind injektiv. Wir überzeugen uns schnell, dass die Komposition injektiver Abbildungen f und g wieder injektiv ist:

$$f \circ g(x) = f \circ g(y) \implies f(g(x)) = f(g(y)) \implies g(x) = g(y)$$
 (da f injektiv) $\implies x = y$ (da g injektiv).

Also haben wir, dass f_1 und f_2 injektiv sind.

Dass f_3 tatsächlich nicht injektiv ist, sehen wir so:

$$f_3(1) = 3 = f_3(-2).$$

Nun zu den Umkehrabbildungen. Streng genommen besitzt eine injektive Abbildung $f \colon X \to Y$ keine Umkehrabbildung, wenn die Zielmenge Y echt größer als das Bild f(X) ist. Betrachten wir statt dessen die Abbildung $f \colon X \to f(X)$, so haben wir eine bijektive Abbildung, die wir umkehren können.

Die nächste Frage ist, wie denn eine Komposition von umkehrbaren Abbildungen umgekehrt wird: die Reihenfolge kehrt sich um!

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1},$$

(es muss ja alles nacheinander rückwärts wieder rückgängig gemacht werden).

Die Abbildungen t und q sind zueinander invers, die Inversion von s ist ihre eigene Umkehrabbildung, also ist

$$f_1^{-1}(x) = (s \circ t)^{-1} = t^{-1} \circ s^{-1} = q \circ s \colon x \mapsto 1 + \frac{1}{x} = \frac{x+1}{x}.$$

Für f_2 gilt

$$f_2(x) = 1 + \frac{2}{x-1} \Leftrightarrow (f_2(x) - 1)(x-1) = 2 \Leftrightarrow x = 1 + \frac{2}{f_2(x) - 1}.$$

Als Umkehrfunktion ergibt sich somit $f_2^{-1}(x) = 1 + \frac{2}{x-1} = f_2(x)$.

c) Erlaubt sind genau die Kompositionen $f_i \circ f_j$ mit $R(f_j) \subseteq D_i$. Hier sind dies:

$$f_3 \circ f_1$$
, $f_3 \circ f_2$, $f_3 \circ f_3$, $f_2 \circ f_2$, $f_1 \circ f_2$.

Alle anderen sind nicht erlaubt. Also auch nicht $f_2 \circ (f_1 \circ f_3)$, da $f_1(2) = 1$ und $2 \in R(f_3)$, aber $1 \notin D_2$.

d) Es ist

$$f_1 \circ f_2 = f_1(f_2(x)) = f_1(\frac{x+1}{x-1}) = \frac{1}{\frac{x+1}{x-1} - 1} = \frac{x-1}{2}.$$

- **Aufgabe 2** a) (i) Wir müssen zeigen, dass h injektiv ist, dass also für alle $x_1, x_2 \in X$ gilt: Aus $x_1 \neq x_2$ folgt $h(x_1) \neq h(x_2)$. Seien $x_1, x_2 \in X$ mit $x_1 \neq x_2$ gegeben. Wegen der Injektivität von f ist dann $f(x_1) \neq f(x_2)$. Wegen der Injektivität von g folgt daraus aber $g(f(x_1)) \neq g(f(x_2))$ und nach Definition der Komposition bedeutet dies gerade $h(x_1) \neq h(x_2)$.
- (ii) "bijektiv" bedeutet: "injektiv" und "surjektiv". Folglich sind f und g injektiv und aus (i) folgt, dass auch h injektiv ist. Jetzt müssen wir nur noch die Surjektivität von h zeigen; diese folgt aus der Surjektivität von f und g. Zu zeigen ist R(h) = Z, also: Zu jedem $z \in Z$ existiert ein $x \in X$ mit h(x) = z. Sei also $z \in Z$ beliebig. Da g surjektiv ist, gibt es dazu ein $g \in Y$ mit g(g) = g
- (iii) Sei $z \in Z$ beliebig; wir müssen zeigen, dass ein $y \in Y$ existiert mit g(y) = z. Da nach Voraussetzung h surjektiv ist, gibt es zu z ein $x \in X$ mit h(x) = z. Nach Definition von h heißt das aber g(f(x)) = z und damit gilt für y := f(x) gerade g(y) = z.
- (iv) Sei $y \in Y$ beliebig. Wir müssen zeigen, dass es ein $x \in X$ gibt mit f(x) = y. Wir definieren zunächst z := g(y). Da h surjektiv ist, existiert zu diesem $z \in Z$ ein $x \in X$ mit z = h(x) = g(f(x)). Damit wissen wir g(f(x)) = z = g(y) und wegen der Injektivität von g folgt f(x) = y.
- b) Da indirekte Beweise gefordert sind, müssen wir z.B. bei (i) zeigen: Falls g nicht surjektiv ist, ist auch h nicht surjektiv.
- (i) Ist g nicht surjektiv, so bedeutet dies $R(g) \neq Z$, also: Es gibt ein $z \in Z$, so dass für alle $y \in Y$ gilt: $g(y) \neq z$. Insbesondere gilt dann aber $h(x) = g(f(x)) \neq z$ für alle $x \in X$ und y := f(x), d. h. h ist nicht surjektiv.
- (ii) Ist f nicht injektiv, so bedeutet dies: Es gibt $x_1, x_2 \in X$ mit $x_1 \neq x_2$ und $f(x_1) = f(x_2)$. Dann folgt aber $h(x_1) = g(f(x_1)) = g(f(x_2)) = h(x_2)$; also ist h nicht injektiv.
- (iii) Wir nehmen an, f wäre injektiv. Da h nicht injektiv ist, gibt es $x_1, x_2 \in X$ mit $x_1 \neq x_2$ und $h(x_1) = h(x_2)$, d.h. $g(f(x_1)) = g(f(x_2))$. Da f injektiv ist, gilt $y_1 := f(x_1) \neq f(x_2) =: y_2$. Trotzdem haben wir $g(y_1) = g(y_2)$ gezeigt, im Widerspruch zur vorausgesetzten Injektivität von g.
- (iv) Angenommen, g wäre nicht injektiv. Dann gibt es also $y_1, y_2 \in Y$ mit $y_1 \neq y_2$ und $g(y_1) = g(y_2)$. Da f surjektiv ist, gibt es zu jedem $y_1, y_2 \in Y$ ein $x_1, x_2 \in X$ mit $f(x_1) = y_1$ und $f(x_2) = y_2$. Da f eine Funktion ist, folgt $x_1 \neq x_2$ aus $y_1 \neq y_2$. Wir erhalten $h(x_1) = g(f(x_1)) = g(y_1) = g(y_2) = g(f(x_2)) = h(x_2)$. Somit ist h nicht injektiv, im Widerspruch zur Voraussetzung.

- c) Wir betrachten stets f(x) := x und $g(x) := x^2$ und ändern nur die Definitionsbereiche bzw. die Menge, in die abgebildet wird. Es ergibt sich $h(x) = x^2$.
- (i) Für $f: \mathbb{R}_+ \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}_+$ ist $h: \mathbb{R}_+ \to \mathbb{R}_+$ injektiv, g jedoch nicht.
- (ii) Für f und g wie in (i) ist h surjektiv, f jedoch nicht.
- (iii) Für $f: \mathbb{R} \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$ ist $h: \mathbb{R} \to \mathbb{R}$ nicht injektiv, f aber schon.
- (iv) Für f und g wie in (iii) ist h nicht surjektiv, f aber schon.

Aufgabe 3 a) Es ist eine quadratische Ergänzung hilfreich: $x^2 - x + 2 = \left(x - \frac{1}{2}\right)^2 + \frac{7}{4}$. Wir sehen, dass der Term für $x \neq \frac{1}{2}$ positiv wird, der ganze Ausdruck für $x = \frac{1}{2}$ also minimal wird. Dieser minimale Wert $\frac{7}{4}$ ist damit sowohl das Minimum als auch das Infimum der Menge A.

Da es für jede natürliche Zahl n ein x gibt mit $\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>n$, nämlich etwa x=n+1:

$$\left(n + \frac{1}{2}\right)^2 + \frac{7}{4} > n,$$

ist A nach oben unbeschränkt, es existieren also weder Maximum noch Supremum.

b) Für alle reellen x mit $1 < x \le 4$ gilt auf jeden Fall:

$$2 \leqslant x + \frac{1}{x} \leqslant \frac{17}{4}.$$

Da für $x \neq 1$ stets $(x-1)^2 > 0$, folgt sogar

$$x + \frac{1}{x} = \frac{1}{x}(x^2 - 2x + 1) + 2 = \frac{1}{x}(x - 1)^2 + 2 > 2.$$

Also ist $2 \notin B$. Wir behaupten aber: 2 ist das Infimum von B. Dazu müssen wir zeigen, dass es für jedes $\varepsilon > 0$ ein x mit $1 < x \leqslant 4$ und $x + \frac{1}{x} < 2 + \varepsilon$ gibt. Da für natürliche $n > \frac{1}{\varepsilon}$ gilt: $\varepsilon > \frac{1}{n}$, genügt es, die Existenz eines x mit $1 < x \leqslant 4$ und $x + \frac{1}{x} < 2 + \frac{1}{n}$ nachzuweisen. Da wohl x nahe der 1 sein muss, setzen wir

$$x = 1 + \frac{1}{n} = \frac{n+1}{n}$$
.

Und in der Tat ist

$$\frac{n+1}{n} + \frac{n}{n+1} = \frac{(n+1)^2 + n^2}{n(n+1)} = \frac{2(n^2+n) + 1}{n(n+1)} = 2 + \frac{1}{n(n+1)} < 2 + \frac{1}{n}.$$

Es ist also 2 das Infimum von B. Wegen $2 \notin B$ hat B kein Minimum.

Nun behaupten wir, dass $x + \frac{1}{x} - \left(4 + \frac{1}{4}\right) \le 0$ für $1 < x \le 4$ ist. In der Tat ist

$$x\left(x + \frac{1}{x} - \left(4 + \frac{1}{4}\right)\right) = x^2 - \left(4 + \frac{1}{4}\right)x + 1 = (x - 4)\left(x - \frac{1}{4}\right) \leqslant 0$$

für $1 < x \le 4$. Da x positiv ist, folgt die Behauptung. Somit ist $4 + \frac{1}{4} = \frac{17}{4}$ als das Maximum und damit auch als das Supremum von B nachgewiesen.

c) Es ist für $n \in \mathbb{N}$ jedenfalls $-1 < (-1)^n + \frac{1}{n} \leqslant \frac{3}{2}$. Sei $\varepsilon > 0$. Für ungerades natürliches $n > \frac{1}{\varepsilon}$ ist

$$(-1)^n + \frac{1}{n} = -1 + \frac{1}{n} < -1 + \varepsilon.$$

Also ist -1 das Infimum von C. Wegen $-1 \notin C$ hat C kein Minimum.

Damit $(-1)^n + \frac{1}{n}$ maximal werden soll, muss notwendigerweise n gerade sein. Dann wird $\frac{1}{n}$ aber maximal $\frac{1}{2}$. Und für n = 2 ist tatsächlich $\frac{3}{2} = (-1)^2 + \frac{1}{2} \in C$. Es ist daher das Supremum gleich dem Maximum von C gleich $\frac{3}{2}$.

Aufgabe T1 a) Wir müssen nur zeigen, dass $\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$ für alle $x \in X$ gilt. (Dass $\chi_A \cdot \chi_B$ Abbildung von X in $\{0,1\}$ ist, ist klar.) Sei also $x \in X$ beliebig.

Fall 1: $x \in A \cap B$. Dies bedeutet $x \in A$ und $x \in B$. Nach Definition der charakteristischen Funktionen ist dann $\chi_{A \cap B}(x) = 1$ und $\chi_A(x) \cdot \chi_B(x) = 1 \cdot 1 = 1$; damit ist in diesem Falle die Gleichheit bewiesen.

Fall 2: $x \notin A \cap B$. Dann muss $x \notin A$ oder $x \notin B$ gelten. Somit ist $\chi_A(x) = 0$ oder $\chi_B(x) = 0$, d. h. das Produkt $\chi_A(x) \cdot \chi_B(x)$ ergibt auf jeden Fall 0. Dies stimmt überein mit $\chi_{A \cap B}(x) = 0$.

b) Nach Definition der charakteristischen Funktion gilt für jedes $x \in X$

$$\chi_{C_X(A)}(x) = \begin{cases} 1, & x \in C_X(A), \\ 0, & x \in C_X(C_X(A)) = A. \end{cases} = \begin{cases} 1 - 1, & x \in A, \\ 1 - 0, & x \in C_X(A). \end{cases} = 1 - \chi_A(x).$$

Unser erstes Ergebnis lautet also: $\chi_{C_X(A)} = 1 - \chi_A$.

Mit $A \setminus B = \{ x \mid x \in A, x \notin B \} = A \cap C_X(B)$ und **a)** ergibt sich $\chi_{A \setminus B} = \chi_A \cdot \chi_{C_X(B)}$, also wegen des gerade Bewiesenen $\chi_{A \setminus B} = \chi_A \cdot (1 - \chi_B)$.

Nun zu $A \triangle B$: Definitionsgemäß ist $A \triangle B = (A \setminus B) \cup (B \setminus A)$. Die hier vereinigten Mengen können offenbar keine Elemente gemeinsam haben, d. h. ein $x \in X$ liegt genau dann in $A \triangle B$, wenn entweder $x \in A \setminus B$ oder $x \in B \setminus A$ gilt. Also ist für alle $x \in X$

$$\chi_{A \triangle B}(x) = \chi_{A \setminus B}(x) + \chi_{B \setminus A}(x),$$

denn wenn $x \notin A \triangle B$ gilt, dann liegt x weder in $A \setminus B$ noch in $B \setminus A$, die Summe ergibt also 0. Ist dagegen $x \in A \triangle B$, so muss x in genau einer der Mengen $A \setminus B$ bzw. $B \setminus A$ liegen. Die Summe ergibt dann 1. Wegen des schon Bewiesenen folgt

$$\chi_{A\triangle B} = \chi_A \cdot (1 - \chi_B) + \chi_B \cdot (1 - \chi_A).$$

Da $\chi_M = \chi_M^2$ für jede charakteristische Funktion χ_M gilt, kann man dies umformen zu

$$\chi_{A \triangle B} = \chi_A - 2 \cdot \chi_A \cdot \chi_B + \chi_B = \chi_A^2 - 2 \cdot \chi_A \cdot \chi_B + \chi_B^2 = (\chi_A - \chi_B)^2.$$

Bei einer beliebigen Vereinigung von Mengen muss man beachten, dass ein Element auch in beiden Mengen liegen kann; dann gäbe die Summe der charakteristischen Funktionen den Wert 2. Aus diesem Grunde ist

$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B} = \chi_A + \chi_B - \chi_A \cdot \chi_B.$$

Aufgabe T2 Zunächst zum Supremum: Da A und B beschränkt, also insbesondere nach oben beschränkt sind, existieren $\alpha := \sup A$ und $\beta := \sup B$. Wir müssen nun zeigen, dass A+B nach oben beschränkt ist und $\sup(A+B) = \alpha+\beta$ gilt. Dazu müssen wir zwei Dinge beweisen: Zum einen, dass $\alpha+\beta$ eine obere Schranke von A+B ist; zum anderen, dass dies auch die kleinste obere Schranke ist.

Wählen wir ein beliebiges $x \in A + B$, so gibt es $a \in A$ und $b \in B$ mit x = a + b. Da α bzw. β obere Schranken für A bzw. B sind, gilt $a \leqslant \alpha$ und $b \leqslant \beta$. Addieren dieser beiden Gleichungen liefert

$$x = a + b \leqslant \alpha + \beta$$
.

Damit wissen wir, dass $A + B \le \alpha + \beta$ ist, d. h. A + B ist nach oben beschränkt und $\alpha + \beta$ ist eine obere Schranke.

Aber ist dies auch die *kleinste* obere Schranke? Dies können wir garantieren, wenn wir zeigen: Keine Zahl $\Gamma < \alpha + \beta$ ist obere Schranke, d. h. zu jeder Zahl $\Gamma < \alpha + \beta$ existiert ein $x \in A + B$ mit $x > \Gamma$.

Sei also $\Gamma < \alpha + \beta$ beliebig. Dann ist $\Gamma - \alpha < \beta$ und da β die *kleinste* obere Schranke von B ist, muss ein $b \in B$ existieren mit $b > \Gamma - \alpha$. Es gilt also $\alpha > \Gamma - b$. Daher existiert wiederum ein $a \in A$ mit $a > \Gamma - b$, d. h. es ist $a + b > \Gamma$, und wegen $a + b \in A + B$ kann damit Γ keine obere Schranke von A + B sein.

Nun zum Infimum. Da A und B nach unten beschränkt sind, folgt genau wie oben, dass auch A+B nach unten beschränkt ist. Aus der Vorlesung wissen wir, wie man bei beschränkten Mengen M das Infimum als ein Supremum schreiben kann. Es gilt $\inf(M) := -\sup(-M)$. Wir erhalten somit:

$$\inf(A+B) = -\sup(-(A+B)) = -\sup((-A) + (-B)) = -(\sup(-A) + \sup(-B))$$

= $-(-\inf A + (-\inf B)) = \inf A + \inf B$.

Aufgabe T3 a) Genau dann ist $x^2 \le 2$, wenn $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$ nicht positiv ist. Genau dann ist aber $-\sqrt{2} \le x \le \sqrt{2}$. Infimum und Minimum von A ist daher $-\sqrt{2}$, Supremum und Maximum ist $\sqrt{2}$.

b) Es ist $0 \leqslant \frac{x^2}{1+x^2} < 1$. Für x = 0 wird $\frac{x^2}{1+x^2}$ Null, also ist das Infimum von B gleich dessen Minimum: 0. Sei $\varepsilon > 0$. Für geeignetes $n \in \mathbb{N}$ ist $\frac{1}{n^2} < \varepsilon$. Dann ergibt sich mit x = n:

$$1 - \frac{1}{n^2} = \frac{n^2 - 1}{n^2} < \frac{n^2}{1 + n^2},$$

da $(n^2 - 1)(1 + n^2) = n^4 - 1 < n^4$. Also ist das Supremum von B gleich 1. B hat kein Maximum.

c) Für die Menge C gilt

$$x^{2} + 2x + 2 > 5 \quad \land \quad x < 0 \quad \Leftrightarrow \quad x^{2} + 2x - 3 > 0 \quad \land \quad x < 0$$

$$\Leftrightarrow \quad (x - 1)(x + 3) > 0 \quad \land \quad x < 0$$

$$\Leftrightarrow \quad (x > 1) \land (x > -3) \quad \lor \quad (x < 1) \land (x < -3) \quad \land \quad x < 0$$

$$\Leftrightarrow \quad x < -3,$$

d.h C ist durch -3 nach oben beschränkt.

Zu überprüfen ist noch, ob dies die kleinste obere Schranke ist, also das Supremum. Wir überprüfen, ob zu $\varepsilon > 0$ ein $x_{\varepsilon} \in C$ existiert mit $x_{\varepsilon} > -3 - \varepsilon$.

Sei hierzu $x_{\varepsilon} = -3 - \frac{\varepsilon}{2} > -3 - \varepsilon$, dann gilt

$$x_{\varepsilon} \in C$$
 \Leftrightarrow $x_{\varepsilon}^{2} + 2x_{\varepsilon} - 3 > 0$ \Leftrightarrow $\left(-3 - \frac{\varepsilon}{2}\right)^{2} + 2\left(-3 - \frac{\varepsilon}{2}\right) - 3 > 0$ \Leftrightarrow $\frac{\varepsilon^{2}}{4} + 2\varepsilon > 0.$

Dies ist immer richtig, da $\varepsilon > 0$. Es ist somit sup C = -3, wobei $-3 \notin C$, d.h. min C existiert nicht.

d) Da $\frac{m+1}{m+n} = \frac{m+n+1-n}{m+n} = 1 - \frac{n-1}{m+n} \le 1 \in D$ ist $\sup D = \max D = 1$.

Behauptung: inf $D=0\notin D,$ d.h. min D existiert nicht $(\frac{m+1}{m+n}>0\ \forall\ m,n\in\mathbb{N})$

Annahme: Sei $\varepsilon > 0$ eine größere untere Schranke. Dann muss $\frac{m+1}{m+n} \geqslant \varepsilon \ \forall \ m,n \in \mathbb{N}$ gelten. Für m=1 gilt aber

$$\frac{2}{n+1} \geqslant \varepsilon \ \forall \ n \in \mathbb{N} \quad \leftrightarrow \quad n \leqslant \frac{2}{\varepsilon} - 1 \ \forall \ n \in \mathbb{N}.$$

Die letzte Ungleichung kann jedoch nicht für alle $n \in \mathbb{N}$ gelten. Die Annahme ist somit falsch und die Behauptung deshalb richtig, d.h. inf D = 0.

Aufgabe T4 a) Wir zeigen $f(A \cup B) \subset f(A) \cup f(B)$ und $f(A \cup B) \supset f(A) \cup f(B)$

"C": Sei $y \in f(A \cup B)$ beliebig. Wähle dazu ein $x \in A \cup B$ mit f(x) = y. Es gilt $x \in A$ oder $x \in B$. d.h. $f(x) \in f(A)$ oder $f(x) \in f(B)$, also $y = f(x) \in f(A) \cup f(B)$. Da y beliebig, gilt $f(A \cup B) \subset f(A) \cup f(B)$.

"⊃": $f(A) = \{y \in Y \mid \exists x \in A : f(x) = y\} \subset \{y \in Y \mid \exists x \in A \cup B : f(x) = y\} = f(A \cup B)$. Analog $f(B) \subset f(A \cup B)$. Insgesamt ergibt sich $f(A) \cup f(B) \subset f(A \cup B)$.

b) Sei $y \in f(A \cap B)$ beliebig. Dann hat y die Gestalt y = f(c) mit $c \in A \cap B$. Wegen $c \in A$ ist daher $y \in f(A)$, und wegen $c \in B$ ist $y \in f(B)$. Also ist $y \in f(A) \cap f(B)$. Da y beliebig, gilt $f(A \cap B) \subseteq f(A) \cap f(B)$.

Dass in b) im Allgemeinen die Gleichheit nicht gilt, zeigt folgendes Gegenbeispiel:

Seien $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2, A = \{0, -1\} \text{ und } B = \{0, 1\}.$ Dann ist

$$f(A \cap B) = f(\{0\}) = \{0\}$$

und

$$f(A) \cap f(B) = \{0, 1\} \cap \{0, 1\} = \{0, 1\},\$$

die Inklusion also echt.