WS 2006/2007 7. November 2006

Dr. A. Müller-Rettkowski

Dr. A. Melcher

Lösungen zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie

Lösung zu Aufgabe H1

(a) (i) Zu zeigen: $M_1 \cap (M_2 \cup M_3) = (M_1 \cap M_2) \cup (M_1 \cap M_3)$.

Wir zeigen zuerst die Inklusion

$$M_1 \cap (M_2 \cup M_3) \subset (M_1 \cap M_2) \cup (M_1 \cap M_3)$$

und dann die Inklusion

$$M_1 \cap (M_2 \cup M_3) \supset (M_1 \cap M_2) \cup (M_1 \cap M_3).$$

 \subset : Sei also $x \in M_1 \cap (M_2 \cup M_3)$. Dann folgt:

$$x \in M_1 \land x \in M_2 \cup M_3$$

$$\Rightarrow x \in M_1 \land (x \in M_2 \lor x \in M_3)$$

$$\Rightarrow (x \in M_1 \land x \in M_2) \lor (x \in M_1 \land x \in M_3)$$

$$\Rightarrow x \in (M_1 \cap M_2) \lor (x \in (M_1 \cap x \in M_3)$$

$$\Rightarrow x \in (M_1 \cap M_2) \cup (M_1 \cap M_3)$$

Also folgt $M_1 \cap (M_2 \cup M_3) \subset (M_1 \cap M_2) \cup (M_1 \cap M_3)$.

 \supset : Sei jetzt $x \in (M_1 \cap M_2) \cup (M_1 \cap M_3)$. Daraus folgt

$$x \in (M_1 \cap M_2) \quad \lor \quad x \in (M_1 \cap M_3)$$

$$\Rightarrow (x \in M_1 \land x \in M_2) \quad \lor \quad (x \in M_1 \land x \in M_3)$$

$$\Rightarrow x \in M_1 \quad \land \quad (x \in M_2 \lor x \in M_3)$$

$$\Rightarrow x \in M_1 \quad \land \quad (M_2 \cap M_3)$$

$$\Rightarrow x \in (M_1 \quad \cap \quad (M_2 \cap M_3)$$

Also folgt $M_1 \cap (M_2 \cup M_3) \supset (M_1 \cap M_2) \cup (M_1 \cap M_3)$.

Mit diesen beiden Inklusionen folgt die Behauptung.

(ii) Zu zeigen: $M_1 \cup (M_2 \cap M_3) = (M_1 \cup M_2) \cap (M_1 \cup M_3)$ Analog zu Teil (a) zeigen wir wieder die beiden Inklusionen:

$$M_1 \cup (M_2 \cap M_3) \subset (M_1 \cup M_2) \cap (M_1 \cup M_3)$$

 $M_1 \cup (M_2 \cap M_3) \supset (M_1 \cup M_2) \cap (M_1 \cup M_3)$

 \subset : Sei $x \in M_1 \cup (M_2 \cap M_3)$. Dann gilt:

$$x \in M_1 \quad \lor \quad x \in (M_2 \cap M_3)$$

$$\Rightarrow x \in M_1 \quad \lor \quad x \in (M_2 \land x \in M_3)$$

$$\Rightarrow (x \in M_1 \lor x \in M_2) \quad \land \quad (x \in M_1 \lor x \in M_3)$$

$$\Rightarrow (x \in M_1 \cup M_2) \quad \land \quad (x \in M_1 \cup M_3)$$

$$\Rightarrow x \in (M_1 \cup M_2) \quad \cap \quad (M_1 \cup M_3)$$

Also $M_1 \cup (M_2 \cap M_3) \subset (M_1 \cup M_2) \cap (M_1 \cup M_3)$.

 \supset : Umgekehrt sei jetzt $x \in (M_1 \cup M_2) \cap (M_1 \cup M_3)$. Daraus folgt:

$$(x \in M_1 \cup M_2) \land (x \in M_1 \cup M_3)$$

$$\Rightarrow (x \in M_1 \lor x \in M_2) \land (x \in M_1 \lor x \in M_3)$$

$$\Rightarrow x \in M_1 \lor (x \in M_2 \land x \in M_3)$$

$$\Rightarrow x \in M_1 \lor (x \in M_2 \cap M_3)$$

$$\Rightarrow x \in M_1 \cup (M_2 \cap M_3)$$

Also $M_1 \cup (M_2 \cap M_3) \supset (M_1 \cup M_2) \cap (M_1 \cup M_3)$.

Mit diesen beiden Inklusionen folgt die Behauptung.

- (b) Nach Definition nimmt die charakteristische Funktion einer Menge A den Wert 1 wenn $x \in A$ und 0 sonst. Damit stellten wir die folgenden drei Behauptungen auf:
 - (i) $\chi_{A \cap B} = \chi_A \chi_B$
 - (ii) $\chi_{C_X(A)} = 1 \chi_A$
 - (iii) $\chi_{A \cup B} = \chi_A + \chi_B$, wenn $A \cap B = \emptyset$

Vorbemerkung: Es ist klar, daß die charaktistische Funktion eine Abbildung von X nach $\{0,1\}$ ist. Im folgenden sei jetzt $x \in X$ beliebig.

zu (i) Weiter sei $x \in A \cap B \Rightarrow x \in A \wedge x \in B$. Nach der Defintion der charakteristischen Funktion ist dann $\chi_{A \cap B} = 1$ und $\chi_A = 1$, $\chi_B = 1$ also $\chi_A \chi_B = 1$. Daraus folgt die Behauptung, denn $\chi_{A \cap B} = 1 = \chi_A \chi_B$. Jetzt sei $x \notin A \cap B \Rightarrow x \notin A \vee x \notin B$. Daraus folgt einerseits, daß $\chi_{A \cap B} = 0$ und anderseits, daß $\chi_A = 0$ oder $\chi_B = 0$ also $\chi_A \chi_B = 0$.

Also gilt $\chi_{A \cap B} = \chi_A \chi_B$.

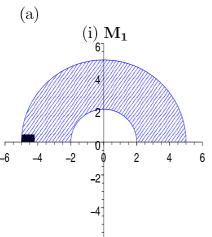
zu (ii) Wir benutzen die Definition der charakteristischen Funktion angewandt auf die Komplementmenge, Es gilt dann:

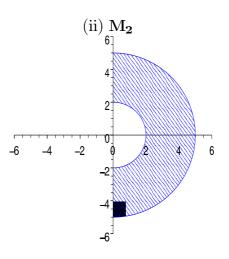
$$\chi_{C_X(A)} = \begin{cases} 1 \text{ für } x \in C_X(A) \\ 0 \text{ für } x \in C_X(C_X(A)) = A \end{cases} = \begin{cases} 1 \text{ für } x \in C_X(A) \\ 0 \text{ für } x \in A \end{cases}$$
$$= \begin{cases} 1 - 1 \text{ für } x \in A \\ 1 - 0 \text{ für } x \in C_X(A) \end{cases} = 1 - \begin{cases} 1 \text{ für } x \in A \\ 0 \text{ für } x \in C_X(A) \end{cases} = 1 - \chi_A$$

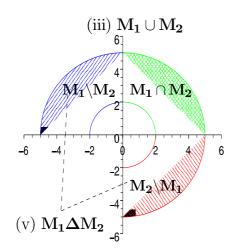
zu (iii) Sei $x \in A \cup B \Rightarrow x \in A \lor x \in B$, da aber die Mengen A und B als disjunkt voraausgesetzt sind, ist x exklusiv in einer der beiden Mengen. Daraus folgt, daß $\chi_A = 1 \land \chi_B = 0$ oder $\chi_A = 0 \land \chi_B = 1$. Daraus folgt dann $\chi_A + \chi_B = 1$. Andererseits gilt $\chi_{A \cap B} = 1$ nach Definition. Anderseits sei jetzt $x \notin A \cup B \Rightarrow x \notin A \land x \notin B$, d.h. $\chi_A = 0$ und $\chi_B = 0$, also $\chi_A + \chi_B = 0 = \chi_{A \cap B}$.

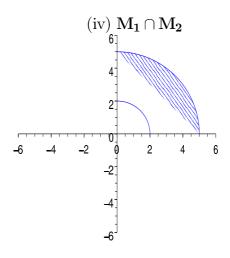
Also gilt $\chi_{A \cup B} = \chi_A + \chi_B$.

Lösung zu Aufgabe H2

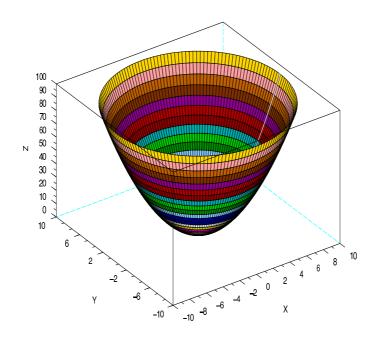




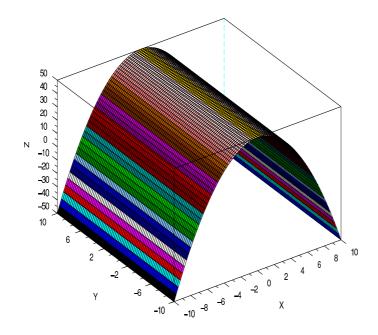




- (b) (i) * Die Menge E_1 stellt eine Ellipsoid mit kreisförmigen Querschnitt parallel zur x, y-Ebene dar.
 - * Die Menge P_1 ist ein parabolischen Zylinder, dessen Mantellinen parallel zur x-Achse liegen.



$$z = x^2 + y^2$$



$$z = 50 - y^2$$

Die beiden Bilder zeigen die Mantelflächen der Mengen E_1 und P_1 .

(ii) Jetzt betrachten wir die Projektionen auf die $x,y-,\ x,z-$ und y,z-Ebene.

Dazu schauen wir uns das folgende Gleichungssystem an, daß aus den Gleichungen der Mantellinien der beiden Mengen E_1 und P_1 besteht. Damit erhalten wir die Ränder der Projektionen der Schnittmenge in die entsprechende Ebene.

$$x^2 + y^2 = z (1)$$

$$50 - y^2 = z. (2)$$

Subtraktion der beiden Gleichungen in (1) liefert $x^2 + y^2 = 50 - y^2$ bzw. $x^2 + 2y^2 = 50$. Division durch 50 liefert die Gleichung für die Projektion in die x, y-Ebene

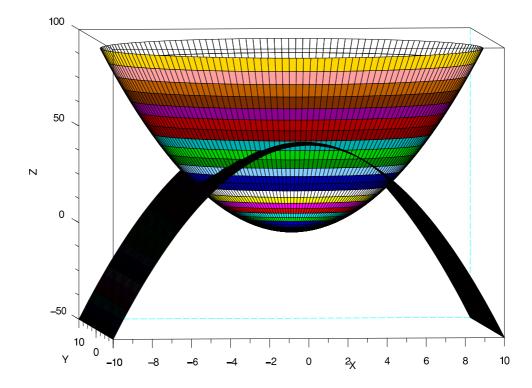
$$\frac{x^2}{50} + \frac{y^2}{25} = 1.$$

Diese Gleichung stellt eine Ellipse mit den Halbachsen $a=5\sqrt{2},\ b=5$ und den Mittelpunkt (0,0) dar.

Hinweis: Die allgemeine Gleichung einer Ellipse mit dem Mittelpunkt $(x_0.y_0)$ und den Halbachsen a, b lautet $\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$.

Addition der beiden Gleichungen von (1) liefert die Projektion in die x, z-Ebene. Wir erhalten $x^2 + 50 = 2z$ bzw. $z = \frac{x^2}{2} + 25$ mit $|x| \le 5\sqrt{2}$. Damit ist die Projektion in die x, z - Ebene eine Parabel.

Die Projektion in y, z-Ebene wird trivialerweise durch den Zylinder P_1 gegeben, also wieder eine Parabel $z=50-y^2$ mit $|y|\leq 5$. Nachfolgender Plot soll den Sachverhalt verdeutlichen.



Lösung zu Aufgabe H3

- (a) Zu zeigen ist, daß h injektiv ist, d.h. also für alle $x_1, x_2 \in X$ gilt, daß aus $x_1 \neq x_2$ auch $h(x_1) \neq h(x_2)$ folgt.
 - Seien jetzt $x_1, x_2 \in X$ mit $x_1 \neq x_2$ gegeben. Da nach Voraussetzung f injektiv ist gilt $f(x_1) \neq f(x_2)$. Da aber auch g injektiv ist folgt $g(y_1) \neq g(y_2)$ mit $y_1 = f(x_1), y = f(x_2)$. Nach der Definition der Komposition bedeutet dies aber gerade $h(x_1) \neq h(x_2)$, also die Injektivität.
- (b) Der Begriff **bijektiv** bedeutet **injektiv** und **surjektiv**. Damit sind f und g injektiv und mit Teil (a) folgt, daß h auch injektiv ist. Es muß nur noch die Surjektivität von h gezeigt werden, diese folgt aus der Surjektivität von f und g. Es ist zu zeigen, daß der Bildbreich von h gerade Z ist.

Zu jeden $z \in Z$ existiert ein $x \in X$ mit h(x) = z. Für beliebiges z und der Tatsache, daß g surjektiv ist, gibt es ein $y \in Y$ mit z = g(y). Da aber auch f surjektiv ist gibt es zu diesem $y \in Y$ ein $x \in X$ mit f(x) = y. Zusammengefaßt bedeutet dies h(x) = g(f(x)) = g(y) = z, also h ist surjektiv und damit auch bijektiv.

Lösung zu Aufgabe H4

(a) Wir bestimmen die zuerst Definitionsbereiche der drei Abbildungen f_i , i = 1, 2, 3. Wir sehen, daß f_1 und f_2 nicht definiert sind wenn die jeweiligen Nenner verschwinden, denn $\frac{1}{0}$ und $\frac{x+1}{0}$ sind nicht definiert. Dies geschieht für x = 2 also haben wir $D_1 = \mathbb{R} \setminus \{1\} = D_2$. Da f_3 ein quadratisches Polynom ist, ist der zugehörige Definitionsbereich ganz \mathbb{R} , also haben wir $D_3 = \mathbb{R}$.

Wir wissen, daß für die Bildmenge gilt $R(f_i) = f_i(D_i)$, i = 1, 2, 3. Zur Bestimmung der Bildmengen zerlegen wir die Abbildungen f_i , i = 1, 2, 3 derart, daß sie sich aus einfacheren Abbildungen zusammensetzen.

(i) Die Abbildung f_1 lässt als $f_1 = s \circ t$ darstellen mit den Abbildungen

$$s: \mathbb{R} \to \mathbb{R} \backslash \{0\} \qquad \qquad t: \mathbb{R} \backslash \{2\} \to \mathbb{R} \backslash \{0\}$$

$$x \mapsto \frac{1}{x}, \qquad \qquad x \mapsto x - 2.$$

Die Zerlegung von f_1 in s und t ist erlaubt, da wir den Definitionbereich von t auf $\mathbb{R}\setminus\{2\}$ einschränken und damit der Bildbereich $R(t) = \mathbb{R}\setminus\{0\}$ ist, worauf s definiert ist. Das Bild $R(f_1)$ berechnet sich dann als

$$\mathbf{R}(\mathbf{f_1}) = f_1(D_1) = f_1(\mathbb{R} \setminus \{2\}) = s(t(\mathbb{R} \setminus \{2\})) = s(\mathbb{R} \setminus \{0\}) = \mathbb{R} \setminus \{0\}.$$

(ii) Die Abbildung f_2 schreiben wir wie folgt um:

$$f_2(x) = \frac{x+1}{x-2} = \frac{x+1+2-2}{x-2} = \frac{3+x-2}{x-2} = 1 + \frac{3}{x-2} = 1 + 3f_1(x)$$

Damit schreiben wir f_2 als $f_2 = q \circ r \circ f_1 = q \circ r \circ s \circ t$ mit

$$q: \mathbb{R} \to \mathbb{R}$$
 $t: \mathbb{R} \to \mathbb{R}$ $x \mapsto 1 + x$, $x \mapsto 3x$.

Damit erhalten wir für den Bildbereich von f_2 :

$$\mathbf{R}(\mathbf{f_2}) = f_2(D_2) = f_2(\mathbb{R} \setminus \{2\}) = q \circ r \circ s \circ t(\mathbb{R} \setminus \{2\})$$
$$= q \circ r \circ s(\mathbb{R} \setminus \{0\}) = q \circ r(\mathbb{R} \setminus \{0\}) = q(\mathbb{R} \setminus \{0\})$$
$$= \mathbb{R} \setminus \{\mathbf{1}\}.$$

(iii) Wir schreiben $f_3(x) = x^2 + x + 1$ durch quadratische Ergänzung als $x^2 + x + 1 = (x + \frac{1}{2})^2 + \frac{7}{4}$. Damit kann f_3 als Verknüpfung der Abbildungen u, v, w dargestellt werden, also $f_3 = u \circ v \circ w$ mit

$$\begin{array}{ll} u: \mathbb{R} \to \mathbb{R} & v: \mathbb{R} \to \mathbb{R} \\ x \mapsto x + \frac{7}{4}, & x \mapsto x^2, & x \mapsto x + \frac{1}{2}. \end{array}$$

Damit erhalten wir für den Bildbereich von f_3 :

$$\mathbf{R_3} = f_3(D_3) = u \circ v \circ w(\mathbb{R}) = u \circ v(\mathbb{R})$$
$$= u(\{x \in \mathbb{R} | x \ge 0\}) = \{\mathbf{x} \in \mathbb{R} | \mathbf{x} \ge \frac{7}{4}\}.$$

- (b) (i/ii) Die Abbildungen f_1 und f_2 sind injektiv, den aus $x \neq y$ folgt $f_i(x) \neq f_i(y)$, i=1,2. Da $f_1=1+3f_2$ genügt es die Injektivität von f_1 zu zeigen. Seien also $x,y\in D(f_1)$ mit $x\neq y$. Zuerst sei x< y dann folgt $f(x)=\frac{1}{x-2}<\frac{1}{y-2}=f(y)$ also $f_1(x)\neq f_1(y)$. Analog gilt fr x>y daß $f_1(x)=\frac{1}{x-2}>\frac{1}{y-2}=f_1(y)$, also auch $f_1(x)\neq f_1(y)$, folglich ist f_1 injektiv.
 - (iii) f_3 ist nicht injektiv. Dazu nehmen wir an, daß $f_3(x) = f_3(y)$ ist. Daraus folgt, daß $(x + \frac{1}{2})^2 = (y + \frac{1}{2})^2$ ist. Ausgerechnet ergibt dies x(x+1) = y(y+1). Diese Gleichung ist erfüllt für x = y = 0 und x = y = -1. Der zugehörige Wert von f_3 ist $f_3(0) = 2 = f_3(-1)$. Also folgt aus $x \neq y$ die Beziehung f(x) = f(y). Also ist f_3 nicht injektiv.
- (c) Wir wissen aus der Vorlesung, daß für die inverse Abbildung gilt $f \circ f^{-1} = id$. Wenn jetzt f die Komposition zweier Abbildungen g und h ist, also $f = g \circ h$, dann berechnet sich die inverser Abbildung f^{-1} als $f_{-1} = h^{-1} \circ g^{-1}$. Damit erhalten wir für die inversen Abildungen von f_1 und f_2 :

$$f_1^{-1} = (s \circ t)^{-1} = t^{-1} \circ s^{-1}, \ f_2^{-1} = (q \circ r \circ s \circ t)^{-1} = t^{-1} \circ s^{-1} \circ r^{-1} \circ q^{-1} \circ q^{-1} \circ r^{-1} \circ r^{$$

.

Zur praktischen Berechung der Umkehrabbildungen f_i^{-1} , i=1,2 lösen wir die Gleichungen von f_i , i=1,2 nach x auf. Wir erhalten dann:

$$f_{1}(x) = \frac{1}{x-2} \Leftrightarrow f_{1}(x)(x-2) = 1 \Leftrightarrow f_{1}(x)x = 1 + 2f_{1}(x) \Leftrightarrow x = \frac{1+2f_{1}(x)}{f_{1}(x)}$$

$$f_{2}(x) = 1 + \frac{3}{x-2} \Leftrightarrow f_{2}(x) - 1 = \frac{3}{x-2} \Leftrightarrow (f_{2}(x) - 1)(x-2) = 3$$

$$\Leftrightarrow (f_{2}(x) - 1)x - 2(f_{2}(x) - 1) = 3 \Leftrightarrow (f_{2}(x) - 1)x - 2(f_{2}(x)) + 2 = 3$$

$$\Leftrightarrow (f_{2}(x) - 1)x - 2(f_{2}(x)) = 1 \Leftrightarrow (f_{2}(x) - 1)x = 1 + 2f_{2}(x) \Leftrightarrow x = \frac{1+2f_{2}(x)}{f_{2}(x) - 1}.$$

Damit erhalten wir für die Umkehrabbildungen

$$f_1^{-1}(x) = \frac{1+2x}{x}, \ f_2^{-1}(x) = \frac{1+2x}{x}.$$