Lösung zu Aufgabe T1 Da A nach unten beschränkt ist (durch 0), existiert $\alpha := \inf A$. Nach Voraussetzung ist $\alpha > 0$ und wir müssen nun zeigen, dass $\alpha^{-1} = \sup B$ gilt. Es sind also zwei Dinge zu beweisen: Zum einen, dass α^{-1} eine obere Schranke von B ist; zum anderen, dass α^{-1} sogar die *kleinste* obere Schranke ist.

Da α eine untere Schranke von A ist, gilt $\alpha \leq a$ für alle $a \in A$. Multiplikation mit $a^{-1}\alpha^{-1}$ (dies ist eine positive Zahl) liefert $a^{-1} \leq \alpha^{-1}$ für alle $a \in A$. Ist nun $x \in B$ beliebig, so gilt $x = a^{-1}$ für ein $a \in A$; es ist also $x \leq \alpha^{-1}$. Damit ist klar, dass B durch α^{-1} nach oben beschränkt ist.

Wir müssen jetzt nur noch zeigen, dass dies auch die kleinste obere Schranke ist, dass also kein $\Gamma < \alpha^{-1}$ obere Schranke von B ist. Es ist klar, dass kein $\Gamma \leq 0$ obere Schranke von B sein kann, da B nur positive Zahlen enthält. Sei also $0 < \Gamma < \alpha^{-1}$ beliebig. Dann folgt $\Gamma^{-1} > \alpha = \inf A$ und da α die $grö\beta te$ untere Schranke von A ist, muss es ein $a \in A$ mit $a < \Gamma^{-1}$ geben. Dies bedeutet aber wiederum $a^{-1} > \Gamma$ und wegen $a^{-1} \in B$ ist damit Γ keine obere Schranke von B.

Lösung zu Aufgabe T2 Wir geben nochmals kurz die Gruppendefinition an:

Es sei A eine Menge und \circ eine Verknüpfung auf A. (A, \circ) heißt **Gruppe**, wenn folgende Bedingungen erfüllt sind.

- (a) (A, \circ) ist eine Halbgruppe, d.h. es gilt das Assoziativgesetz.
- (b) (A, \circ) besitzt ein neutrales Element $e \in A$, d.h. für $x \in A$ gilt: $x \circ e = e \circ x = x$.
- (c) Zu jedem $x \in A$ gibt es ein inverses Element x^{-1} , d.h. $x \circ x^{-1} = x^{-1} \circ x = e$.

Die Gruppe (A, \circ) heißt **abelsch**, wenn die zugehörige Halbgruppe (A, \circ) kommutativ ist.

Wir müssen jetzt die Gruppenaxiome bzgl. der Verknüpfung * nachprüfen mit

$$(a_1, a_2) * (b_1, b_2) = (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1).$$

(a) **Assoziativgesetz:** Wir müssen zeigen:

$$(a_1, a_2) * [(b_1, b_2) * (c_1, c_2)] = [(a_1, a_2) * (b_1, b_2)] * (c_1, c_2).$$

Unter Ausnutzung der Definition der Verknüpfung * erhalten wir für die linke Seite der letzten Gleichung:

$$(a_1, a_2) * [(b_1, b_2) * (c_1, c_2)]$$

$$= (a_1, a_2) * (b_1c_1 - b_2c_2, b_1c_2 + b_2c_1)$$

$$= (a_1(b_1c_1 - b_2c_2) - a_2(b_1c_2 + b_2c_1), (a_1(b_1c_2 + b_2c_1) + a_2(b_1c_2 + b_2c_1))$$

$$= (a_1b_1c_1 - a_1b_2c_2 - a_2b_1c_2 - a_2b_2c_1, a_1b_1c_2 + a_1b_2c_1 + a_2b_1c_1 - a_2b_2c_2)$$

Im letzten Schritt haben wir die Distributivität der Muliplikation ausgenutzt.

Für die rechte Seite der Behauptung gilt wieder unter Ausnutzung des Distributivgesetzes der Multiplikation:

$$[(a_1, a_2) * (b_1, b_2)] * (c_1, c_2)$$

$$= (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1) * (c_1, c_2)$$

$$= (a_1b_1c_1 - a_2b_2c_1 - a_1b_2c_2 - a_2b_1c_2, a_1b_1c_2 - a_2b_2c_2 + a_1b_2c_1 + a_2b_1c_1)$$

Die Gleichheit der beiden Seiten ergibt sich jetzt durch die Kommutativität der Addition. Also genügt die Verknüpfung * dem Assoziativgesetz.

Damit ist $(\mathbb{R}^2, *)$ eine Halbgruppe.

(b) Neutrales Element bzgl. *: Gesucht ist ein Element $(e_1, e_2) \in \mathbb{R}^2$, so daß $(e_1, e_2) * (a_1, a_2) = (a_1, a_2)$ für alle $(a_1, a_2) \in \mathbb{R}^2$ ist. Nach der Definition der Verknüpfung * erhalten wir

$$(e_1, e_2) * (a_1, a_2) = (e_1a_1 - e_2a_2, e_1a_2 + e_2a_1) = (a_1, a_2)$$

bzw.

$$e_1a_1 - e_2a_2 = a_1$$

 $e_1a_2 - e_2a_1 = a_2$

Koeffizientenvergleich ergibt $e_1 = 1$ und $e_2 = 0$. Also ist $(e_1, e_2) = (1, 0)$ das neutrale Element.

(c) Inverses Element bzgl. *: Gesucht ist ein Element $(b_1, b_2) \in \mathbb{R}^2$, so daß bzgl. der Verknüpfung * für alle $(a_1, a_2) \in \mathbb{R}^2$, für die dies möglich ist, gilt

$$(a_1, a_2) * (b_1, b_2) = (e_1, e_2)$$
.

Wir bezeichnen dann $(b_1, b_2) := (a_1, a_2)^{-1}$.

Mit dem neutralen Element $(e_1, e_2) = (1, 0)$ und der Definition der Verknüpfung * erhalten wir

$$(a_1, a_2) * (b_1, b_2) = (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1) = (e_1, e_2) = (1, 0)$$

bzw.

$$a_1b_1 - a_2b_2 = 1$$

 $a_1b_2 - a_2b_1 = 0.$

Multiplikation der ersten Gleichung mit a_1 , der zweiten Gleichung mit a_2 und anschließende Addition der beiden Gleichungen liefert

$$a_1^2b_1 + a_2^2b_1 = a_1 \Leftrightarrow (a_1^2 + a_2^2)b_1 = a_1 \Leftrightarrow b_1 = \frac{a_1}{a_1^2 + a_2^2}, \ \forall (a_1, a_2) = (0, 0).$$

Das Ergebnis für b_1 in die zweite Gleichung eingesetzt liefert

$$a_1b_2 + a_2\frac{a_1}{a_1^2 + a_2^2} = 0 \Leftrightarrow b_2 = -\frac{a_2}{a_1^2 + a_2^2}.$$

Damit ist für alle $(a_1, a_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ das zur Verknüpfung * inverse Element als $(a_1, a_2)^{-1} = \left(\frac{a_1}{a_1^2 + a_2^2}, b_2 = -\frac{a_2}{a_1^2 + a_2^2}\right)$ gegeben.

Damit ist $(\mathbb{R}^2 \setminus \{(0,0)\}, *)$ eine Gruppe.

(d) **Kommutativgesetz:** Unter Ausnutzung der Kommutativität der Multiplikation und Addition reeller Zahlen erhalten wir

$$(a_1, a_2) * (b_1, b_2) = (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1)$$

$$= (b_1a_1 - b_2a_2, b_2a_1 + b_1a_2)$$

$$= (b_1a_1 - b_2a_2, b_1a_2 + b_2a_1)$$

$$= (b_1, b_2) * (a_1, a_2).$$

Folglich gehorcht die Verknüpfung * dem Kommuativgesetz.

Damit ist $(\mathbb{R}^2 \setminus \{(0,0)\}, *)$ eine abelsche Gruppe.

Lösung zu Aufgabe T3 Wir zeigen mit Hilfe der vollständigen Induktion

(a)

$$\forall n \in \mathbb{N} : \sqrt[n]{\prod_{i=1}^n a_i} \le \frac{1}{n} \sum_{i=1}^n a_i$$

Wir zeigen die Aussage zunächst für alle $n \in \mathbb{N}$ mit $n = 2^k, k \in \mathbb{N}_0$

- (i) Induktionsanfang:
 - * Für k = 0 gilt ist Aussage offensichtlich.
 - * Für k=1, d.h. n=1 gilt $\sqrt{a_1a_2} \leq \frac{a_1+a_2}{2}$ nach der Vorlesung.
- (ii) Induktionsvoraussetzung: Für ein $k \geq 0$ gelte

$$\sqrt[2^k]{\prod_{i=1}^{2^k} a_i} \le \frac{1}{2^k} \sum_{i=1}^{2^k} a_i \qquad (IV)$$

(iii) Induktionsschluß: $2^k \rightarrow 2^{k+1}$.

$$\frac{1}{2^{k+1}} \sqrt{\prod_{i=1}^{2^{k+1}} a_i} = \sqrt{\frac{1}{2^k} \prod_{i=1}^{2^k} a_i} = \sqrt{\frac{1}{2^k} \prod_{i=1}^{2$$

Dabei haben wir im vorletzten Rechenschritt ausgenutzt, daß $\sqrt{b_1b_2} \leq \frac{b_1+b_2}{2}$

mit
$$b_1 = \sum_{i=1}^{2^k} a_i$$
 und $b_2 = \sum_{i=2^k+1}^{2^k+2^k} a_i$ gilt.

Also haben wir die Aussage für $n=2^k,\ k\in\mathbb{N}_0$ bewiesen.

Im nächsten Schritt zeigen wir die Aussage für beliebige n. Wir haben als Induktionsvoraussetzung

$$\sqrt[n]{\prod_{i=1}^{n} a_i} \le \frac{1}{n} \sum_{i=1}^{n} a_i \qquad (IV)$$

und schließen jetzt von $n \to n-1$, wobei wir annehmen, daß $n=2^k$ ist, denn dann ist n-1 für k>0 keine Potenz von 2. (Beachte wir führen unseren Induktionschluß von n nach n-1 durch!) Es gilt

$$\sqrt[n-1]{\prod_{i=1}^{n-1} a_i} = \sqrt[n]{\prod_{i=1}^{n-1} a_i \cdot \left(\prod_{i=1}^{n-1} a_i\right)^{\frac{1}{n-1}}} \underbrace{\leq}_{IV} \frac{1}{n} \left(\sum_{i=1}^{n-1} a_i + \sqrt[n-1]{\prod_{i=1}^{n-1} a_i}\right)$$

Daraus folgt

$$(n-1) \sqrt[n-1]{\prod_{i=1}^{n-1} a_i} \le \sum_{i=1}^{n-1} a_i$$

bzw.

$$\sqrt[n-1]{\prod_{i=1}^{n-1} a_i} \le \frac{1}{n-1} \sum_{i=1}^{n-1} a_i$$

Damit ist die Aussage für alle naturlichen Zahlen bewiesen.

- (b) Für $a \in (0,1)$ und $n \ge 1$ gilt die Ungleichung: $(1+a)^n < \frac{1}{1+na}$
 - (i) **Induktionsanfang:** Die Aussage ist für n=1 richtig, d.h. es ist $1-a<\frac{1}{1+a}$. Denn würde die Umkehrung gelten, d.h. aus $1-a\geq \frac{1}{1+a}$ folgt $1-a^2\geq 1$, also $a^2\leq 0$. Dies kann aber nicht sein.
 - (i) Induktionsvoraussetzung: Die Aussage ist für ein beliebiges $n \ge 1$ gültig, d.h.

$$(1-a)^n < \frac{1}{1+na} \qquad \text{(IV)}.$$

(i) Induktionsschluß: $n \rightarrow n+1$

$$(1-a)^{n+1} = (1-a)^n (1-a) \underbrace{\frac{1}{1+na}} (1-a)$$

$$= \frac{(1-a)(1+a)}{(1+na)(1+a)} = \frac{1-a^2}{1+(n+1)a+na^2}$$

$$< \frac{1}{1+(n+1)a+na^2} < \frac{1}{1+(n+1)a}$$

Also haben wir $(1-a)^{n+1} = \frac{1}{1+(n+1)a}$. Womit die Behauptung bewiesen ist.

(c)
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

- (i) **Induktionsanfang:** Für n = 1 haben wir $\sum_{k=0}^{1} k^2 = 1 = \frac{1(1+1)(2+1)}{6}$
- (i) Induktionsvoraussetzung: Für ein $n \in \mathbb{N}$ gelte

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 (IV).

(i) Induktionsschluß: $n \rightarrow n+1$

$$\sum_{k=0}^{n+1} k^2 = \sum_{k=0}^{n} k^2 + (n+1)^2 \underbrace{=}_{\text{IV}} \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} = \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}.$$

Lösung zu Aufgabe T4

(a) 1.Lösungsweg: Es gilt nach der Definition des Betrages

$$|x| := \left\{ \begin{array}{cc} x & \text{für} & x \ge 0 \\ -x & \text{für} & x < 0 \end{array} \right.,$$

das folgende

$$|x+1| = \begin{cases} - & (x+1) \text{ für } -\infty < x < -1 \\ & x+1 \text{ für } -1 \le x \le \infty \end{cases},$$

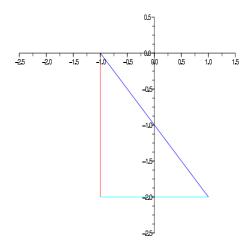
$$|y+2| = \begin{cases} - & (y+2) \text{ für } -\infty < x < -2 \\ & y+2 \text{ für } -2 \le y \le \infty \end{cases}.$$

Deshalb müssen wir vier Fälle untersuchen:

1. Fall: In der Viertelebene $x \ge -1, \ y \ge -2$ gilt:

$$x + 1 + y + 2 \le 2$$
 bzw. $y \le x - 1$.

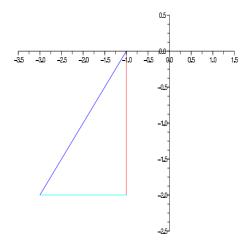
Diese Bedingungen werden von den inneren Punkten des untenstehend skizzierten Dreiecks erfüllt.



2. Fall: In der Viertelebene $x<-1,\ y\geq -2$ gilt:

$$-x - 1 + y + 2 \le 2$$
 bzw. $y \le x + 1$.

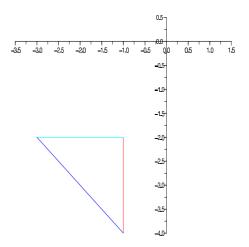
Diese Bedingungen werden von den inneren Punkten des untenstehend skizzierten Dreiecks erfüllt.



3. Fall: In der Viertelebene x < -1, y < -2 gilt:

$$-x-1-y-2 \leq 2 \quad \text{bzw.} \quad y \geq -x-5.$$

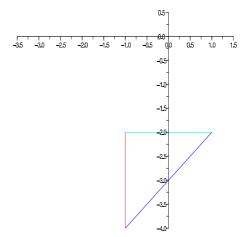
Diese Bedingungen werden von den inneren Punkten des untenstehend skizzierten Dreiecks erfüllt.



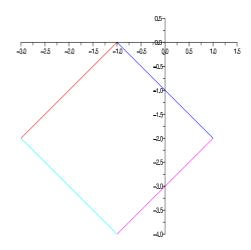
4. Fall: In der Viertelebene $x \ge -1, \ y < -2$ gilt:

$$x+1-y-2\leq 2 \quad \text{bzw.} \quad y\geq x-3.$$

Diese Bedingungen werden von den inneren Punkten des untenstehend skizzierten Dreiecks erfüllt.



Zusammenfassend erfüllt die Ungleichung $|x+1|+|y+2| \le 2$ die Vereinigungsmenge der Dreiecke aus dem 1.Fall-4.Fall, was nachstehende Skizze verdeutlicht.



(b) **2.Lösungsweg:** Durch die Translationen $u=x+1,\ x=u-1$ und $v=y+2,\ y=v-2$ überführen wir unser Problem

$$|x+1| + |y+2| \le 2$$

auf das einfachere Problem

$$|u| + |v| \le 2.$$

Die gesuchte Punktmenge ist symmetrisch zu den Koordinatenachsen in der u,v-Ebene. Es genügt also die Punktmenge im ersten Quadranten der u,v-Ebene zu untersuchen. Es gilt dort $u+v \leq 2$ bzw. $v \leq 2-u$. Diese Punktmenge stellt im ersten Quadranten ein Dreieck dar, daß durch die Geraden $u=0,\ v=0$ und v=2-u begrenzt wird. Spiegelung an der u- und v-Achse liefert in der u,v-Ebene das Innere eines Quadrates, daß durch die vier Geraden $v=2-u,\ v=2-u,\ v=2-u,\ v=-2+u$ begrenzt wird. Jetzt muß nur die Translation für u,v rückgängig gemacht werden und man erhält in der x,y-Ebene ein Quadrat, daß durch die vier Geraden $y=-x-1,\ y=y=x+1,\ y=-x-5,\ y=x-3$ begrenzt wird.