Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie

Lösungsvorschläge zum 7. Übungsblatt

Aufgabe 1

a) Die Bernoullische Ungleichung liefert $2^n = (1+1)^n \ge 1 + n \ge n$ für alle $n \in \mathbb{N}$, d. h. es ist stets $\sqrt[n]{n} \le 2$. Somit ergibt sich für alle $n \in \mathbb{N}$

$$\left|\frac{\sqrt[n]{n!}}{n!}\right| \leqslant \frac{2}{n!} =: b_n.$$

Bekanntlich konvergiert $\sum_{n=0}^{\infty} \frac{1}{n!}$ (mit Reihenwert e), also ist auch $\sum_{n=1}^{\infty} b_n$ konvergent, und die absolute Konvergenz der Reihe $\sum_{n=1}^{\infty} \frac{\sqrt[n]{n}}{n!}$ folgt mit dem Majorantenkriterium.

b) Es gilt

$$\sqrt{1+n^2} - n = \frac{1+n^2-n^2}{\sqrt{1+n^2}+n} = \frac{1}{\sqrt{1+n^2}+n} \geqslant \frac{1}{\sqrt{4n^2}+n} = \frac{1}{3n} =: c_n \geqslant 0,$$

und da die Reihe über c_n divergiert, gilt dies nach dem Minorantenkriterium auch für die zu untersuchende Reihe.

- c) Für alle $n \ge 3$ gilt $\frac{1}{2} + \frac{1}{n} \le \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$ und daher $(\frac{1}{2} + \frac{1}{n})^n \le (\frac{5}{6})^n$. Die geometrische Reihe $\sum_{n=0}^{\infty} (\frac{5}{6})^n$ ist also eine konvergente Majorante von $\sum_{n=1}^{\infty} (\frac{1}{2} + \frac{1}{n})^n$. Nach dem Majorantenkriterium ist $\sum_{n=1}^{\infty} (\frac{1}{2} + \frac{1}{n})^n$ absolut konvergent.
- d) Ist $a_n := \frac{(n!)^2}{(2n)!}$ gesetzt, so gilt für alle $n \in \mathbb{N}$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{((n+1)!)^2}{(2(n+1))!} \cdot \frac{(2n)!}{(n!)^2} \right| = \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{(1+1/n)^2}{(2+2/n)(2+1/n)} \xrightarrow{n \to \infty} \frac{(1+0)^2}{(2+0)(2+0)} = \frac{1}{4}.$$

Infolgedessen ist $|a_{n+1}| \leq \frac{1}{2}|a_n|$ für fast alle $n \in \mathbb{N}$. Daher liefert das Quotientenkriterium die absolute Konvergenz von $\sum_{n=0}^{\infty} a_n$.

e) Für $n \in \mathbb{N}$ schreiben wir $a_n := \frac{(-1)^n}{3n+(-1)^n} = (-1)^n b_n$ mit $b_n := \frac{1}{3n+(-1)^n}$. Die Folge (b_n) konvergiert gegen 0. Ferner ist (b_n) monoton fallend, denn für alle $n \in \mathbb{N}$ gilt

$$\frac{b_n}{b_{n+1}} \geqslant 1 \quad \Leftrightarrow \quad \frac{3(n+1) + (-1)^{n+1}}{3n + (-1)^n} \geqslant 1 \quad \Leftrightarrow \quad 3 \geqslant (-1)^n - (-1)^{n+1} \quad \Leftrightarrow \quad 3 \geqslant 2(-1)^n$$

und die letzte Ungleichung ist offenkundig wahr. Nach dem Leibnizkriterium konvergiert $\sum_{n=1}^{\infty} (-1)^n b_n$. Wegen

$$|a_n| = \frac{1}{3n + (-1)^n} \geqslant \frac{1}{3n + n} = \frac{1}{4n}$$

und der Divergenz von $\sum_{n=1}^{\infty} \frac{1}{n}$ ist $\sum_{n=1}^{\infty} \frac{1}{4n}$ eine divergente Minorante für $\sum_{n=1}^{\infty} |a_n|$. Deshalb ist $\sum_{n=1}^{\infty} a_n$ nicht absolut konvergent.

f) Wir wissen, dass $\sqrt[n]{n} \xrightarrow{n \to \infty} 1$ gilt. Daher ist die Folge $(\sqrt[n]{n})$ beschränkt, d.h. es gibt eine Konstante C so, dass $\sqrt[n]{n} \leqslant C$ für alle $n \in \mathbb{N}$ gilt. Hiermit erhalten wir

$$n^{-1-\frac{1}{n}} = \frac{1}{n\sqrt[n]{n}} \geqslant \frac{1}{Cn}.$$

Da die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergent ist, folgt die Divergenz der zu untersuchenden Reihe aus dem Minorantenkriterium.

Aufgabe 2

a) Offenbar ist $a_1 = 2 > 0$. Für jedes n > 1 gilt wegen $n > \sqrt{n}$

$$a_n = \frac{1}{\sqrt{n}} + \frac{(-1)^{n+1}}{n} \geqslant \frac{1}{\sqrt{n}} - \frac{1}{n} > \frac{1}{n} - \frac{1}{n} = 0.$$

Die Konvergenz von (a_n) gegen 0 ist klar wegen $1/\sqrt{n} \xrightarrow{n\to\infty} 0$ und $1/n \xrightarrow{n\to\infty} 0$.

b) Für jedes $N \in \mathbb{N}$ gilt

$$s_N := \sum_{n=1}^{N} (-1)^n a_n = \sum_{n=1}^{N} \left(\frac{(-1)^n}{\sqrt{n}} + \frac{-1}{n} \right) = \sum_{n=1}^{N} \frac{(-1)^n}{\sqrt{n}} - \sum_{n=1}^{N} \frac{1}{n}.$$

Die erste Summe ist die N-te Partialsumme der Reihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$, die nach dem Leibnizkriterium konvergiert; insbesondere ist die Folge ihrer Partialsummen $\left(\sum_{n=1}^{N} \frac{(-1)^n}{\sqrt{n}}\right)_{N \in \mathbb{N}}$ nach oben beschränkt, d. h. es gibt eine Konstante C mit $\sum_{n=1}^{N} \frac{(-1)^n}{\sqrt{n}} \leqslant C$ für alle $N \in \mathbb{N}$. Es folgt

$$s_N \leqslant C - \sum_{n=1}^N \frac{1}{n}$$
 für jedes $N \in \mathbb{N}$.

Aufgrund von $\sum_{n=1}^{N} \frac{1}{n} \to \infty$ für $N \to \infty$ folgt $s_N \xrightarrow{N \to \infty} -\infty$, d.h. die gegebene Reihe $\sum_{n=1}^{\infty} (-1)^n a_n$ ist tatsächlich divergent.

- c) Das Leibnizkriterium ist nicht anwendbar, weil die Folge (a_n) nicht monoton ist.
- d) Offenbar gilt $b_n > 0$ für alle $n \in \mathbb{N}$.

Zunächst zum Quotientenkriterium: Für ungerades $n \in \mathbb{N}$ gilt

$$\frac{b_{n+1}}{b_n} = \frac{(1+\frac{1}{2})^{n+1}}{(n+1)^2} \cdot \frac{n^2}{(1-\frac{1}{2})^n} = \frac{n^2}{(n+1)^2} \cdot \frac{(\frac{3}{2})^{n+1}}{(\frac{1}{2})^n} = \frac{1}{(1+\frac{1}{n})^2} \cdot \frac{3^{n+1}}{2} \xrightarrow{n \to \infty} \infty.$$

Folglich gibt es kein $\vartheta \in (0,1)$ mit $\frac{b_{n+1}}{b_n} \leqslant \vartheta$ für fast alle $n \in \mathbb{N}$.

Ferner ist $\frac{b_{n+1}}{b_n}\geqslant 1$ für fast alle $n\in\mathbb{N}$ nicht erfüllt, denn für gerade $n\in\mathbb{N}$ ergibt sich

$$\frac{b_{n+1}}{b_n} = \frac{(1-\frac{1}{2})^{n+1}}{(n+1)^2} \cdot \frac{n^2}{(1+\frac{1}{2})^n} = \frac{n^2}{(n+1)^2} \cdot \frac{(\frac{1}{2})^{n+1}}{(\frac{3}{2})^n} = \frac{1}{(1+\frac{1}{n})^2} \cdot \frac{1}{2 \cdot 3^n} \xrightarrow{n \to \infty} 0.$$

Das Quotientenkriterium liefert somit keine Entscheidung.

Das Wurzelkriterium kann dennoch eine Entscheidung bringen, und so ist es in diesem Falle tatsächlich. Für gerades $n \in \mathbb{N}$ gilt nämlich

$$\sqrt[n]{b_n} = \frac{1 + \frac{1}{2}}{\sqrt[n]{n^2}} = \frac{\frac{3}{2}}{(\sqrt[n]{n})^2} \xrightarrow{n \to \infty} \frac{3}{2},$$

d. h. es gilt $\sqrt[n]{b_n} \geqslant 1$ für unendlich viele n, und dies impliziert die Divergenz der Reihe.

2

Aufgabe 3

Wegen $i^4 = (-1)^2 = 1$ gilt für alle $m \in \mathbb{N}$

$$i^{4m-3} = i,$$
 $i^{4m-2} = -1,$ $i^{4m-1} = -i,$ $i^{4m} = 1.$

Folglich erhalten wir für jedes $N \in \mathbb{N}$

$$\begin{split} \sum_{n=1}^{4N} \frac{i^n}{n} &= \sum_{m=1}^{N} \left(\frac{i^{4m-3}}{4m-3} + \frac{i^{4m-2}}{4m-2} + \frac{i^{4m-1}}{4m-1} + \frac{i^{4m}}{4m} \right) \\ &= i \sum_{m=1}^{N} \left(\frac{1}{4m-3} - \frac{1}{4m-1} \right) + \sum_{m=1}^{N} \left(\frac{1}{4m} - \frac{1}{4m-2} \right) \\ &= i \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + - \ldots + \frac{1}{4N-3} - \frac{1}{4N-1} \right) + \left(\frac{1}{4} - \frac{1}{2} + \frac{1}{8} - \frac{1}{6} + - \ldots + \frac{1}{4N} - \frac{1}{4N-2} \right) \\ &= i \sum_{k=1}^{2N} (-1)^{k+1} \frac{1}{2k-1} + \sum_{k=1}^{2N} (-1)^k \frac{1}{2k}. \end{split}$$

Da $(\frac{1}{2k-1})_k$ bzw. $(\frac{1}{2k})_k$ monoton fallende Nullfolgen sind, konvergieren diese Summen für $N \to \infty$ nach dem Leibnizkriterium. Damit wissen wir: Wenn wir mit s_N die N-te Partialsumme der zu untersuchenden Reihe bezeichnen, dann konvergiert s_{4N} für $N \to \infty$. Für $m \in \{1, 2, 3\}$ gilt

$$s_{4N+m} = s_{4N} + \sum_{n=4N+1}^{4N+m} \frac{i^n}{n} \xrightarrow{N \to \infty} \lim_{N \to \infty} s_{4N}$$

wegen $|i^n/n|=1/n$. Folglich konvergiert s_N für $N\to\infty$, d.h. die Reihe $\sum_{n=1}^{\infty}\frac{i^n}{n}$ konvergiert. Sie ist aber nicht absolut konvergent, weil die harmonische Reihe $\sum_{n=1}^{\infty}|\frac{i^n}{n}|=\sum_{n=1}^{\infty}\frac{i}{n}$ divergiert.

Aufgabe 4

a) Sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge mit $a_{n+1}\leqslant a_n$ und $a_n\geqslant 0$ für alle $n\in\mathbb{N}$. Dann gilt:

$$\sum_{n=1}^{\infty} a_n \text{ konvergiert} \qquad \Longleftrightarrow \qquad \sum_{k=0}^{\infty} 2^k a_{2^k} \text{ konvergiert.}$$

Beweis:

"⇒": Sei $\sum_{n=1}^{\infty} a_n$ konvergent. Wir setzen $b := \sum_{n=1}^{\infty} a_n$. Um die Konvergenz von $\sum_{k=0}^{\infty} 2^k a_{2^k}$ zu zeigen, müssen wir begründen, dass die Folge $(s_K)_{K \in \mathbb{N}} := (\sum_{k=0}^K 2^k a_{2^k})_{K \in \mathbb{N}}$ für $K \to \infty$ konvergiert. Da (a_n) monoton fallend ist, gilt für jedes $K \in \mathbb{N}$

$$b \geqslant a_1 + a_2 + (a_3 + a_4) + (a_5 + \ldots + a_8) + \ldots + (a_{2^{K-1} + 1} + \ldots + a_{2^K}) \geqslant \frac{1}{2} a_1 + a_2 + 2a_4 + \ldots + 2^{K-1} a_{2^K}.$$

Also ist $s_K = a_1 + 2a_2 + 4a_4 + \ldots + 2^K a_{2^K} \leq 2b$ für jedes $K \in \mathbb{N}$, d.h. $(s_K)_{K \in \mathbb{N}}$ ist beschränkt.

Wegen $a_n \geq 0$ für alle $n \in \mathbb{N}$ ist $(s_K)_{K \in \mathbb{N}}$ monoton wachsend.

Nach dem Monotoniekriterium ist $(s_K)_{K\in\mathbb{N}}$ konvergent, d.h. $\sum_{k=0}^{\infty} 2^k a_{2^k}$ konvergiert.

" \Leftarrow ": Nun konvergiere $\sum_{k=0}^{\infty} 2^k a_{2^k}$. Wir schreiben wie zuvor $(s_K)_{K \in \mathbb{N}} := (\sum_{k=0}^K 2^k a_{2^k})_{K \in \mathbb{N}}$. Nach Voraussetzung ist (s_K) konvergent, etwa $s_K \to s$ $(K \to \infty)$.

Ist $b_N := \sum_{n=1}^N a_n$ für $N \in \mathbb{N}$ gesetzt, so gilt für $K \in \mathbb{N}$ mit $2^K \geqslant N$

$$b_N = a_1 + a_2 + \ldots + a_N \leqslant a_1 + (a_2 + a_3) + (a_4 + \ldots + a_7) + \ldots + (a_{2^K} + \ldots + a_{2^{K+1}-1})$$

$$\leqslant a_1 + 2a_2 + 4a_4 + \ldots + 2^K a_{2^K} = s_K \leqslant s.$$

Also ist (b_N) nach oben durch s beschränkt. Da (b_N) überdies monoton wachsend ist, liefert das Monotoniekriterium die Konvergenz von (b_N) , d.h. $\sum_{n=1}^{\infty} a_n$ konvergiert.

Setzt man statt der Monotonie nur $a_n \ge 0$ für alle $n \in \mathbb{N}$ voraus, so ist die Aussage i.a. falsch. Ist beispielsweise die Folge $(a_n)_{n \in \mathbb{N}}$ gegeben durch

$$a_n = \begin{cases} 1/n & \text{falls } n = 2^k \text{ für ein } k \in \mathbb{N} \cup \{0\} \\ 0 & \text{sonst} \end{cases}$$

also $(a_n) = (1, \frac{1}{2}, 0, \frac{1}{4}, 0, 0, 0, \frac{1}{8}, 0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{16}, \dots)$, dann konvergiert $\sum_{n=1}^{\infty} a_n = \sum_{k=0}^{\infty} 2^{-k}$ (geometrische Reihe) mit Wert $\frac{1}{1-\frac{1}{2}} = 2$, jedoch ist $\sum_{k=0}^{\infty} 2^k a_{2^k} = \sum_{k=0}^{\infty} 1$ divergent.

b) Sei $\alpha \in \mathbb{Q}$. Im Fall $\alpha < 0$ divergiert die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, weil $(\frac{1}{n^{\alpha}})_{n \in \mathbb{N}}$ keine Nullfolge ist. Sei nun $\alpha \geqslant 0$. Setze $a_n := \frac{1}{n^{\alpha}}$. Dann sind $a_n > 0$ und $\frac{a_{n+1}}{a_n} = (\frac{n}{n+1})^{\alpha} = (1 - \frac{1}{n+1})^{\alpha} \leqslant 1$ für alle $n \in \mathbb{N}$. Also genügt (a_n) den Voraussetzungen von Teil **a**). Dieser liefert

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \sum_{n=1}^{\infty} a_n \quad \text{konvergent} \qquad \Leftrightarrow \qquad \sum_{k=0}^{\infty} 2^k a_{2^k} = \sum_{k=0}^{\infty} \frac{2^k}{(2^k)^{\alpha}} = \sum_{k=0}^{\infty} \left(\frac{1}{2^{\alpha-1}}\right)^k \quad \text{konvergent}$$

$$\Leftrightarrow \qquad \left|\frac{1}{2^{\alpha-1}}\right| < 1 \quad \Leftrightarrow \quad \alpha - 1 > 0 \quad \Leftrightarrow \quad \alpha > 1.$$

Aufgabe 5

Die Reihe

$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{6}} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} = -\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

konvergiert nach dem Leibnizkriterium, weil $(1/\sqrt{n})$ eine monoton fallende Nullfolge ist. Es gilt

$$1 + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{7}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{9}} + \frac{1}{\sqrt{11}} - \frac{1}{\sqrt{6}} + \dots = \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{4n-3}} + \frac{1}{\sqrt{4n-1}} - \frac{1}{\sqrt{2n}} \right).$$
 (*)

Für jedes $n \in \mathbb{N}$ ist

$$\frac{1}{\sqrt{4n-3}} + \frac{1}{\sqrt{4n-1}} - \frac{1}{\sqrt{2n}} \geqslant \frac{1}{\sqrt{4n}} + \frac{1}{\sqrt{4n}} - \frac{1}{\sqrt{2n}} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{2n}} = \left(1 - \frac{1}{\sqrt{2}}\right) \cdot \frac{1}{\sqrt{n}}.$$

Da $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ divergiert (vgl. Aufgabe **4 b)**), ist $(1 - \frac{1}{\sqrt{2}})$ $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ eine divergente Minorante für die Reihe in (*).

Aufgabe 6

Sei $q \in (0.1)$. Die geometrische Reihe $\sum_{n=0}^{\infty} q^n$ ist absolut konvergent. Nach Satz 10 in 8.4 gilt

$$\left(\frac{1}{1-q}\right)^2 = \left(\sum_{n=0}^{\infty} q^n\right)^2 = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n q^k q^{n-k}\right) = \sum_{n=0}^{\infty} \left(q^n \sum_{k=0}^n 1\right) = \sum_{n=0}^{\infty} (n+1)q^n.$$

Diese Reihe ist als Cauchyprodukt absolut konvergenter Reihen ebenfalls absolut konvergent. Indem man das Cauchyprodukt dieser Reihe mit $\sum_{n=0}^{\infty} q^n$ bildet, ergibt sich

$$\left(\frac{1}{1-q}\right)^2 \cdot \frac{1}{1-q} = \left(\sum_{n=0}^{\infty} (n+1)q^n\right) \left(\sum_{n=0}^{\infty} q^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} (k+1)q^k q^{n-k}\right)$$
$$= \sum_{n=0}^{\infty} \left(q^n \sum_{k=0}^{n} (k+1)\right)^{\text{Bsp. 1 in 5.4}} = \sum_{n=0}^{\infty} \frac{1}{2} (n+1)(n+2)q^n.$$

Für die gegebene Reihe erhalten wir daher

$$\sum_{n=0}^{\infty} (n+1)(n+2)q^n = 2\left(\frac{1}{1-q}\right)^2 \cdot \frac{1}{1-q} = \frac{2}{(1-q)^3}.$$

Aufgabe 7

Zu $n \in \mathbb{N} \cup \{0\}$ definiere $a_n := \frac{(-1)^n}{\sqrt{n+1}}$ sowie $b_n := \frac{1}{\sqrt{n+1}}$. Die Reihe $\sum_{n=0}^{\infty} (-1)^n b_n$ konvergiert nach dem Leibnizkriterium, weil (b_n) eine monoton fallende Nullfolge ist (Nachweis der Monotonie: $1 \leqslant 2 \Rightarrow n+1 \leqslant n+2 \Rightarrow \frac{1}{n+2} \leqslant \frac{1}{n+1} \Rightarrow b_{n+1} \leqslant b_n$ für jedes $n \in \mathbb{N}$). Für das Cauchyprodukt $\sum_{n=0}^{\infty} c_n$ der Reihe $\sum_{n=0}^{\infty} a_n$ mit sich selbst gilt

$$c_n = \sum_{k=0}^n a_{n-k} a_k = \sum_{k=0}^n \frac{(-1)^{n-k}}{\sqrt{n-k+1}} \cdot \frac{(-1)^k}{\sqrt{k+1}} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{n-k+1} \cdot \sqrt{k+1}}.$$

Mit

$$0 \leqslant (\sqrt{a} - \sqrt{b})^2 = a - 2\sqrt{a}\sqrt{b} + b \quad \Leftrightarrow \quad \sqrt{a}\sqrt{b} \leqslant \frac{1}{2}(a+b) \qquad (\text{für } a, b > 0)$$

folgt

$$|c_n| = \sum_{k=0}^n \frac{1}{\sqrt{n-k+1} \cdot \sqrt{k+1}} \geqslant \sum_{k=0}^n \frac{1}{\frac{1}{2}(n-k+1+k+1)} = \sum_{k=0}^n \frac{2}{n+2}$$
$$= \frac{2}{n+2} \sum_{k=0}^n 1 = \frac{2(n+1)}{n+2} = \frac{2+2/n}{1+2/n} \to 2 \quad (n \to \infty).$$

Demnach ist (c_n) keine Nullfolge und damit $\sum_{n=0}^{\infty} c_n$ divergent.

Bemerkung: In dieser Aufgabe wurde ein Beispiel gegeben, dass das Cauchyprodukt zweier konvergenter Reihen nicht konvergieren muss, wenn beide Reihen nicht absolut konvergieren.

Aufgabe 8

a) Wir ziehen das Wurzelkriterium zu Rate:

$$\sqrt[n]{|z^n/n^2|} = \frac{|z|}{(\sqrt[n]{n})^2} \xrightarrow{n \to \infty} |z|.$$

Damit wissen wir: Für |z| < 1 liegt Konvergenz vor, für |z| > 1 jedoch Divergenz. Untersuchen wir noch den Fall |z| = 1: Dann gilt

$$\left| \frac{z^n}{n^2} \right| = \frac{1}{n^2},$$

d. h. die Konvergenz folgt mit dem Majorantenkriterium.

Insgesamt ergibt sich: Die Reihe konvergiert genau dann, wenn $|z| \leq 1$.

b) Diesmal verwenden wir das Quotientenkriterium: Für $a_n := n! z^n$ gilt

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)! |z|^{n+1}}{n! |z|^n} = (n+1)|z|.$$

Dieser Ausdruck strebt für $z \neq 0$ gegen ∞ , für z = 0 gegen 0. Also konvergiert die Reihe nur für z = 0.

c) Zunächst müssen wir die z von der Konkurrenz ausschließen, für die $z^{2n}=-1$ für ein n vorkommt. Alle derartigen z haben Betrag 1; für alle anderen z mit |z|=1 gilt

$$\left| \frac{z^n}{1+z^{2n}} \right| = \frac{|z|^n}{|1+z^{2n}|} = \frac{1}{|1+z^{2n}|} \geqslant \frac{1}{1+|z|^{2n}} = \frac{1}{2}.$$

Die Reihenglieder bilden also keine Nullfolge, d.h. die Reihe kann für |z|=1 nicht konvergieren.

5

Nun sei r:=|z|<1. Wir haben $|1+z^{2n}|\geqslant 1-|z^{2n}|=1-r^{2n}$ wegen der umgekehrten Dreiecksungleichung. Also ist

$$\left|\frac{z^n}{1+z^{2n}}\right|\leqslant \frac{r^n}{1-r^{2n}}\leqslant \frac{r^n}{1-r^2}$$

und mit dem Majorantenkriterium folgt Konvergenz.

Im Falle r>1 verwenden wir $|1+z^{2n}|\geqslant |z^{2n}|-1=r^{2n}-1$. Wegen $r^{2n}\to\infty$ für $n\to\infty$ gibt es ein $N\in\mathbb{N}$ mit $r^{2n}\geqslant 2$ für alle $n\geqslant N$. Für solche n ist dann $1\leqslant \frac{1}{2}r^{2n}$ und wir erhalten

$$\left| \frac{z^n}{1+z^{2n}} \right| \leqslant \frac{r^n}{r^{2n}-1} \leqslant \frac{r^n}{r^{2n}-\frac{1}{2}r^{2n}} = \frac{2}{r^n} =: c_n \text{ für } n \geqslant N.$$

Da $\sum_{n=N}^{\infty} c_n$ konvergiert, gilt dies wegen des Majorantenkriteriums auch für $\sum_{n=N}^{\infty} a_n$, wobei $a_n := z^n/(1+z^{2n})$. Dann konvergiert aber auch $\sum_{n=0}^{\infty} a_n$.

Insgesamt: Die Reihe konvergiert genau dann, wenn $|z| \neq 1$.

Aufgabe 9 (P)

a) Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Folgen in \mathbb{R} sowie $\sum_{n=1}^{\infty}a_n^2$ und $\sum_{n=1}^{\infty}b_n^2$ konvergent. Nach der Cauchy-Schwarzschen Ungleichung gilt für alle $N\in\mathbb{N}$

$$\sum_{n=1}^{N} |a_n b_n| \leqslant \left(\sum_{n=1}^{N} a_n^2\right)^{1/2} \left(\sum_{n=1}^{N} b_n^2\right)^{1/2}.$$

Wegen der Konvergenz von $\sum_{n=1}^{\infty}a_n^2$ und $\sum_{n=1}^{\infty}b_n^2$ ist die rechte Seite beschränkt durch $(\sum_{n=1}^{\infty}a_n^2)^{1/2}(\sum_{n=1}^{\infty}b_n^2)^{1/2}$. Deshalb ist die Folge $(\sum_{n=1}^{N}|a_nb_n|)_{N\in\mathbb{N}}$ konvergent bzw. die Reihe $\sum_{n=1}^{\infty}a_nb_n$ absolut konvergent. Hieraus ergibt sich die Konvergenz von $\sum_{n=1}^{\infty}a_nb_n$.

b) Aus der Konvergenz von $\sum_{n=1}^{\infty} a_n^2$ und $\sum_{n=1}^{\infty} \frac{1}{n^2}$ folgt laut **a)** die Konvergenz von $\sum_{n=1}^{\infty} \frac{a_n}{n}$.

Aufgabe 10 (P)

Die Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent, also gilt $a_n \to 0$; da die Folge (a_n) zudem monoton fällt, ist $a_n \ge 0$ für alle n.

Nun sei $\varepsilon > 0$ beliebig. Da die Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert, gibt es ein $N_0 \in \mathbb{N}$ mit

$$\sum_{n=N_0+1}^{\infty} a_n = \left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N_0} a_n \right| < \frac{\varepsilon}{2}.$$

Wegen $a_n \to 0$ gilt auch $N_0 \cdot a_n \to 0$ für $n \to \infty$. Somit existiert ein $N_1 \in \mathbb{N}$ mit $|N_0 \cdot a_n| < \varepsilon/2$ für alle $n \ge N_1$. Damit ergibt sich für jedes $N \in \mathbb{N}$ mit $N > \max\{N_0, N_1\}$

$$N \cdot a_N = N_0 \cdot a_N + \sum_{n=N_0+1}^N a_N \leqslant N_0 \cdot a_N + \sum_{n=N_0+1}^N a_n < \frac{\varepsilon}{2} + \sum_{n=N_0+1}^\infty a_n < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(Bei der ersten Abschätzung benutzen wir, dass die Folge (a_n) monoton fällt.) Da $\varepsilon > 0$ beliebig war, ist damit $N \cdot a_N \to 0$ für $N \to \infty$ bewiesen.

Die Voraussetzung $a_n \ge 0$ statt der Monotonie genügt nicht: Man betrachte das Beispiel

$$a_n = \begin{cases} 1/n, & \text{falls } n \text{ eine Zweierpotenz ist,} \\ 0, & \text{sonst.} \end{cases}$$

Die Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent, weil $\sum_{k=0}^{\infty} 2^{-k}$ konvergiert. Wenn n eine Zweierpotenz ist, gilt jedoch $n \cdot a_n = 1$; die Folge $(n \cdot a_n)$ konvergiert also nicht gegen 0.

Wiederholung: Konvergenz von Reihen

Definition: Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge. Zu $N\in\mathbb{N}$ setze $s_N:=\sum_{n=1}^N a_n=a_1+a_2+\ldots+a_N$. Die Folge $(s_N)_{N\in\mathbb{N}}$ heißt (unendliche) Reihe und wird mit $\sum_{n=1}^\infty a_n$ bezeichnet. Die Reihe $\sum_{n=1}^\infty a_n$ heißt konvergent, falls die Folge $(s_N)_{N\in\mathbb{N}}$ konvergiert. Ist $\sum_{n=1}^\infty a_n$ konvergent, so heißt $\lim_{N\to\infty} s_N$ der Reihenwert von $\sum_{n=1}^\infty a_n$ und wird begeichnet durch der Reihenwert von $\sum_{n=1}^{\infty} a_n$ und wird bezeichnet durch

$$\sum_{n=1}^{\infty} a_n := \lim_{N \to \infty} \sum_{n=1}^{N} a_n = \lim_{N \to \infty} s_N.$$

Satz: Ist $\sum_{n=1}^{\infty} a_n$ konvergent, so gilt $\lim_{n\to\infty} a_n = 0$. D.h.: Ist $(a_n)_{n\in\mathbb{N}}$ keine Nullfolge, so divergiert $\sum_{n=1}^{\infty} a_n$.

Die Reihe $\sum_{n=1}^{\infty} a_n$ heißt absolut konvergent, falls $\sum_{n=1}^{\infty} |a_n|$ konvergiert.

Satz:

$$\sum_{n=1}^{\infty} a_n \quad \text{absolut konvergent} \quad \Longrightarrow \quad \sum_{n=1}^{\infty} a_n \quad \text{konvergent und es gilt} \quad \left| \sum_{n=1}^{\infty} a_n \right| \leqslant \sum_{n=1}^{\infty} |a_n| \, .$$

Untersuchung von Reihen auf Konvergenz:

- Berechne die Folge der Partialsummen (s_N) und prüfe, ob (s_N) konvergiert.
- Benutze Konvergenzkriterien für Reihen:

Leibnizkriterium für alternierende Reihen

Sei (b_n) eine monoton fallende Folge mit $b_n \to 0$. Dann konvergiert $\sum_{n=1}^{\infty} (-1)^n b_n$.

Majoranten- und Minorantenkriterium

Seien (a_n) und (b_n) Folgen.

- (1) Gilt $|a_n| \leq b_n$ für fast alle $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ konvergent, so ist $\sum_{n=1}^{\infty} a_n$ absolut
- (2) Gilt $a_n \geqslant b_n \geqslant 0$ für fast alle $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ divergent, so ist auch $\sum_{n=1}^{\infty} a_n$ divergent.

Quotientenkriterium

Sei (a_n) eine Folge mit $a_n \neq 0$ für fast alle $n \in \mathbb{N}$ und $c_n := \left| \frac{a_{n+1}}{a_n} \right|$ für n mit $a_n \neq 0$.

- (1) Ist $\vartheta \in (0,1)$ und gilt $c_n \leqslant \vartheta$ für fast alle $n \in \mathbb{N}$, so ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.
- (2) Ist $c_n \ge 1$ für fast alle $n \in \mathbb{N}$, so ist $\sum_{n=1}^{\infty} a_n$ divergent.

Wurzelkriterium

Sei (a_n) eine Folge.

- (1) Ist $\vartheta \in (0,1)$ und gilt $\sqrt[n]{|a_n|} \leqslant \vartheta$ für fast alle $n \in \mathbb{N}$, so ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.
- (2) Ist $\sqrt[n]{|a_n|} \ge 1$ für unendlich viele $n \in \mathbb{N}$, so divergiert $\sum_{n=1}^{\infty} a_n$.

Spezialfall, der bei der Untersuchung auf Konvergenz bzw. Divergenz meist ausreicht:

7

Für die Reihe $\sum_{n=1}^{\infty} a_n$ existiere $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| =: \vartheta$ oder $\lim_{n\to\infty} \sqrt[n]{|a_n|} =: \vartheta$. Dann gilt:

Im Fall $\vartheta < 1$ ist die Reihe $\sum_{n=1}^{\infty} a_n$ absolut konvergent.

Im Fall $\vartheta = 1$ ist keine Aussage möglich.

Im Fall $\vartheta > 1$ ist die Reihe $\sum_{n=1}^{\infty} a_n$ divergent.