Prof. Dr. W. Reichel

Dr. S. Wugalter

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik

Lösungsvorschläge zum 2. Übungsblatt

Aufgabe 1

a) Der Ausdruck $f_1(x) = \frac{1}{x-1}$ ist überall da definiert, wo der Nenner nicht verschwindet, also $D_1 = \mathbb{R} \setminus \{1\}.$

Der maximale Definitionsbereich von $f_2(x) = \frac{x+1}{x-1}$ ist ebenfalls $D_2 = \mathbb{R} \setminus \{1\}$.

Polynome wie $f_3(x) = x^2 + x + 1$ sind auf ganz \mathbb{R} definiert, also $D_3 = \mathbb{R}$.

Zur Bestimmung der Bildmenge $f_1(D_1)$ von f_1 setzen wir die Abbildung f_1 aus zwei Abbildungen zusammen. Seien

$$s: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}, \quad x \mapsto \frac{1}{x} \quad \text{und} \quad t_{-1}: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{0\}, \quad x \mapsto x - 1.$$

Dann sind sowohl s als auch t_{-1} bijektiv $[s \text{ injektiv: } \forall x_1, x_2 \in \mathbb{R} \setminus \{0\} : x_1 \neq x_2 \Rightarrow 1/x_1 \neq 1/x_2 \Rightarrow s(x_1) \neq s(x_2); s \text{ surjektiv: Sei } y \in \mathbb{R} \setminus \{0\}.$ Für $x := 1/y \in \mathbb{R} \setminus \{0\}$ gilt s(x) = s(1/y) = y. t_{-1} injektiv: $\forall x_1, x_2 \in \mathbb{R} \setminus \{1\} : x_1 \neq x_2 \Rightarrow x_1 - 1 \neq x_2 - 1 \Rightarrow t_{-1}(x_1) \neq t_{-1}(x_2); t_{-1}$ surjektiv: Sei $y \in \mathbb{R} \setminus \{0\}.$ Für $x := y + 1 \in \mathbb{R} \setminus \{1\}$ gilt $t_{-1}(x) = t_{-1}(y + 1) = (y + 1) - 1 = y$.] Nach Aufgabe 6 b) i) vom 1. Übungsblatt ist $s \circ t_{-1} : \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{0\}$ bijektiv. $(s \circ t_{-1} \text{ ist erlaubt, weil } t_{-1}(\mathbb{R} \setminus \{1\}) = \mathbb{R} \setminus \{0\}$ und s hierauf definiert ist!) Da für alle $x \in \mathbb{R} \setminus \{1\}$

$$s \circ t_{-1}(x) = s(t_{-1}(x)) = s(x-1) = \frac{1}{x-1} = f_1(x)$$

gilt, folgt

$$f_1(\mathbb{R}\setminus\{1\})=(s\circ t_{-1})(\mathbb{R}\setminus\{1\}))=\mathbb{R}\setminus\{0\}.$$

Für $f_2(x) = \frac{x+1}{x-1}$ ist folgende Umformung sehr hilfreich

$$f_2(x) = \frac{x+1}{x-1} = \frac{x-1+2}{x-1} = 1 + \frac{2}{x-1} = 1 + 2 \cdot f_1(x)$$
 für $x \neq 1$. (1)

Wegen

$$y \in f_2(\mathbb{R} \setminus \{1\}) \quad \Leftrightarrow \quad \exists x \in \mathbb{R} \setminus \{1\} : \ y = f_2(x) \stackrel{(1)}{=} 1 + 2 \cdot f_1(x)$$

$$\Leftrightarrow \quad \exists x \in \mathbb{R} \setminus \{1\} : \ \frac{y - 1}{2} = f_1(x)$$

$$\Leftrightarrow \quad \frac{y - 1}{2} \in f_1(\mathbb{R} \setminus \{1\}) = \mathbb{R} \setminus \{0\}$$

$$\Leftrightarrow \quad y \in \mathbb{R} \setminus \{1\}$$

gilt $f_2(D_2) = \mathbb{R} \setminus \{1\}.$

Bei $f_3(x) = x^2 + x + 1$ ist eine quadratische Ergänzung günstig:

$$x^{2} + x + 1 = x^{2} + x + \frac{1}{4} - \frac{1}{4} + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$

Der Graph der Funktion $\mathbb{R} \to \mathbb{R}$, $x \mapsto (x + \frac{1}{2})^2$ ist eine nach oben geöffnete Parabel, ihr Bildbereich ist also die Menge der nichtnegativen reellen Zahlen $\{y \in \mathbb{R} : y \geq 0\} = [0, \infty)$. Für die Bildmenge von f_3 erhalten wir

$$f_3(D_3) = \left\{ y \in \mathbb{R} : y \geqslant \frac{3}{4} \right\} = \left[\frac{3}{4}, \infty \right).$$

b) Im a)-Teil haben wir bereits gesehen, dass f_1 injektiv ist. Alternativ: f_1 ist injektiv, denn für alle $x, y \in D_1$ mit $x \neq y$ gilt

$$x \neq y \quad \Leftrightarrow \quad x - 1 \neq y - 1 \quad \stackrel{x,y \neq 1}{\Leftrightarrow} \quad \frac{1}{x - 1} \neq \frac{1}{y - 1} \quad \Leftrightarrow \quad f_1(x) \neq f_2(y).$$

Die Abbildung f_2 ist ebenfalls injektiv. Dies folgt aus der Injektivität von f_1 und (1), denn für alle $x, y \in \mathbb{R} \setminus \{1\}$ gilt

$$x \neq y \Leftrightarrow f_1(x) \neq f_1(y) \Leftrightarrow 1 + 2 \cdot f_1(x) \neq 1 + 2 \cdot f_1(y) \Leftrightarrow f_2(x) \neq f_2(y).$$

Wegen $f_3(-1) = 1 = f_3(0)$ ist f_3 nicht injektiv.

Nun zu den Umkehrabbildungen: Eine injektive Abbildung $f: X \to Y$ besitzt keine Umkehrabbildung, wenn die Zielmenge Y echt größer als die Bildmenge f(X) ist. Wir betrachten daher die Abbildung $f: X \to f(X)$ (diese ist automatisch surjektiv!); dies ist eine bijektive Abbildung, welche wir umkehren können. Im folgenden seien also $f_i: D_i \to f_i(D_i)$.

Die Umkehrabbildung von $f_1 = s \circ t_{-1} : \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{0\}$ ist nach Satz 3.6 gegeben durch

$$(f_1)^{-1} = (s \circ t_{-1})^{-1} = (t_{-1})^{-1} \circ s^{-1}.$$

Definieren wir

$$t_1: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{1\}, \quad x \mapsto x + 1,$$

so sind die Abbildungen t_{-1} und t_1 einander invers, denn es gilt

$$t_1 \circ t_{-1}(x) = t_1(t_{-1}(x)) = t_1(x-1) = (x-1) + 1 = x$$
 für alle $x \in \mathbb{R} \setminus \{1\}$, $t_{-1} \circ t_1(x) = t_{-1}(t_1(x)) = t_{-1}(x+1) = (x+1) - 1 = x$ für alle $x \in \mathbb{R} \setminus \{0\}$.

Die Abbildung s ist wegen $s \circ s(x) = s(s(x)) = \frac{1}{1/x} = x$ für alle $x \in \mathbb{R} \setminus \{0\}$ zu sich selbst invers, d.h. $s^{-1} = s$. Hiermit erhalten wir

$$(f_1)^{-1} = (t_{-1})^{-1} \circ s^{-1} = t_1 \circ s,$$

also

$$(f_1)^{-1}: f_1(D_1) \to D_1, \ y \mapsto (t_1 \circ s)(y) = t_1(s(y)) = t_1(\frac{1}{y}) = \frac{1}{y} + 1 = \frac{1+y}{y}.$$

Zur Bestimmung von $(f_2)^{-1}$ lösen wir die Gleichung $f_1(x) = y$ nach x auf (hier sind $x \in D_2 = \mathbb{R} \setminus \{1\}, y \in f_2(D_2) = \mathbb{R} \setminus \{1\}$):

$$\frac{x+1}{x-1} = y \quad \Leftrightarrow \quad x+1 = y(x-1) \quad \Leftrightarrow \quad x(1-y) = -y-1$$

$$\Leftrightarrow \quad x = \frac{-y-1}{1-y} = \frac{y+1}{y-1} = f_2(y).$$

Also ist f_2 ihre eigene Umkehrabbildung: $(f_2)^{-1} = f_2$.

c) Erlaubt sind genau die Kompositionen $f_i \circ f_j$ mit $f_j(D_j) \subset D_i$. Hier sind dies:

$$f_3 \circ f_1$$
, $f_3 \circ f_2$, $f_3 \circ f_3$, $f_2 \circ f_2$, $f_1 \circ f_2$.

Alle anderen sind nicht erlaubt.

Wegen $2 \in f(D_3)$ und $f_1(2) = 1$, aber $1 \notin D_2$ ist $f_2 \circ (f_1 \circ f_3)$ nicht erlaubt.

d) Es ist

$$f_1 \circ f_2 : \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ x \mapsto f_1(f_2(x)) = f_1\left(\frac{x+1}{x-1}\right) = \frac{1}{\frac{x+1}{x-1}-1} = \frac{1}{\frac{x+1}{x-1}-\frac{x-1}{x-1}} = \frac{1}{\frac{2}{x-1}} = \frac{x-1}{2}.$$

Aufgabe 2

a) Es gilt

$$|x-4| = |x+1| \Leftrightarrow (x-4)^2 = (x+1)^2 \Leftrightarrow x^2 - 8x + 16 = x^2 + 2x + 16$$

 $\Leftrightarrow 10x = 15 \Leftrightarrow x = \frac{3}{2}.$

Alternativ führen auch geometrische Überlegungen zum Ziel: Gesucht sind diejenigen $x \in \mathbb{R}$, die denselben Abstand zu 4 wie zu -1 haben, d.h. x liegt genau in der Mitte: $x = \frac{4+(-1)}{2} = \frac{3}{2}$. Eine weitere Alternative besteht darin, die Fallunterscheidung $x \in (-\infty, -1], x \in (-1, 4]$,

b) |2x| > |5-2x| besagt, dass notwendig $x \neq 0$ sein muss. Für $x \in \mathbb{R} \setminus \{0\}$ gilt aber

 $x \in (4, \infty)$ durchzuführen, um die Beträge aufzulösen...

$$|2x| > |5 - 2x| \quad \Leftrightarrow \quad \left| \frac{5 - 2x}{2x} \right| < 1 \quad \Leftrightarrow \quad -1 < \underbrace{\frac{5 - 2x}{2x}}_{=\frac{5}{2x} - 1} < 1 \quad \Leftrightarrow \quad 0 < \frac{5}{2x} < 2$$

$$\Leftrightarrow \quad \frac{2}{5}x > \frac{1}{2} \quad \Leftrightarrow \quad x > \frac{5}{4}.$$

c) Es ist

$$\begin{aligned} |2-|2-x|| &\leqslant 1 &\Leftrightarrow -1 \leqslant 2-|2-x| \leqslant 1 &\Leftrightarrow -3 \leqslant -|2-x| \leqslant -1 \\ &\Leftrightarrow 1 \leqslant |2-x| \leqslant 3 &\Leftrightarrow 1 \leqslant 2-x \leqslant 3 \text{ oder } -3 \leqslant 2-x \leqslant -1 \\ &\Leftrightarrow -1 \leqslant -x \leqslant 1 \text{ oder } -5 \leqslant -x \leqslant -3 &\Leftrightarrow -1 \leqslant x \leqslant 1 \text{ oder } 3 \leqslant x \leqslant 5 \\ &\Leftrightarrow x \in [-1,1] \cup [3,5]. \end{aligned}$$

d) Wir unterscheiden drei Fälle:

1. Fall:
$$x \in (-\infty, -1)$$
. Mit $|x + 1| = -(x + 1)$ und $|x - 1| = -(x - 1)$ ergibt sich $|x + 1| + |x - 1| = -2x$.

Deshalb gilt

$$|x+1|+|x-1|>2$$
 \Leftrightarrow $-2x>2$ \Leftrightarrow $x<-1$.

2. Fall: $x \in [-1, 1)$. Hier ist |x + 1| = x + 1 und |x - 1| = -(x - 1), also

$$|x+1| + |x-1| = 2.$$

Demzufolge lautet in diesem Fall die Ungleichung: 2 > 2. Diese ist unlösbar.

3. Fall: $x \in [1, \infty)$. Wegen |x + 1| = x + 1 und |x - 1| = x - 1 folgt

$$|x+1| + |x-1| = 2x$$

und damit

$$|x+1|+|x-1|>2$$
 \Leftrightarrow $2x>2$ \Leftrightarrow $x>1.$

Zusammenfassend haben wir:

$$|x+1|+|x-1|>2$$
 \Leftrightarrow $x<-1$ oder $x>1$ \Leftrightarrow $x\in(-\infty,-1)\cup(1,\infty)$.

3

- e) Wir führen eine Fallunterscheidung durch.
 - 1. Fall: x < 0. Dann ist |x| = -x, und es gilt

$$\frac{3x}{1+|x|} < 4x^2 \quad \Leftrightarrow \quad 3x < 4x^2(1-x) \quad \Leftrightarrow \quad 0 < -4x^3 + 4x^2 - 3x$$

$$\Leftrightarrow \quad 0 < -4x\left(x^2 - x + \frac{3}{4}\right) \quad \Leftrightarrow \quad 0 < -4x\left[\underbrace{\left(x - \frac{1}{2}\right)^2 + \frac{1}{2}}_{\geqslant \frac{1}{2} > 0}\right]$$

$$\Leftrightarrow \quad 0 < -4x \quad \Leftrightarrow \quad x < 0.$$

2. Fall: $x \ge 0$. Dann ist |x| = x, und es gilt

$$\frac{3x}{1+|x|} < 4x^2 \quad \Leftrightarrow \quad 3x < 4x^2(1+x) \quad \Leftrightarrow \quad 0 < 4x^3 + 4x^2 - 3x$$

$$\Leftrightarrow \quad 0 < 4x\left(x^2 + x - \frac{3}{4}\right) \quad \Leftrightarrow \quad 0 < 4x\left[\left(x + \frac{1}{2}\right)^2 - 1\right]$$

$$\Leftrightarrow \quad 4x > 0 \quad \text{und} \quad \left(x + \frac{1}{2}\right)^2 - 1 > 0$$

$$\Leftrightarrow \quad x > 0 \quad \text{und} \quad \left|x + \frac{1}{2}\right| > 1$$

$$\Leftrightarrow \quad x > 0 \quad \text{und} \quad \left(x + \frac{1}{2} > 1 \quad \text{oder} \quad x + \frac{1}{2} < -1\right)$$

$$\Leftrightarrow \quad x > 0 \quad \text{und} \quad \left(x > \frac{1}{2} \quad \text{oder} \quad x < -\frac{3}{2}\right)$$

$$\Leftrightarrow \quad x > \frac{1}{2}.$$

Demzufolge gilt $\frac{3x}{1+|x|} < 4x^2$ genau für $x \in \mathbb{R}$ mit x < 0 oder $x > \frac{1}{2}$.

- f) Auf keinen Fall kommt x = 1 in Frage, denn die Division durch 0 ist nicht definiert. Ansonsten multiplizieren wir die Ungleichung mit 1 x. Dabei müssen wir zwei Fälle unterscheiden:
 - 1. Fall: Sei zunächst 1-x>0, also x<1. Multiplikation mit 1-x liefert

$$2x + \frac{1}{1-x} \geqslant 1 \quad \Leftrightarrow \quad 2x(1-x) + 1 \geqslant 1 - x \quad \Leftrightarrow \quad 2x - 2x^2 + 1 \geqslant 1 - x$$
$$\Leftrightarrow \quad 3x - 2x^2 \geqslant 0 \quad \Leftrightarrow \quad x(3-2x) \geqslant 0.$$

Die letzte Ungleichung gilt genau dann, wenn $x \ge 0$ und $3 - 2x \ge 0$ oder aber wenn $x \le 0$ und $3 - 2x \le 0$.

 $x\geqslant 0$ und $3-2x\geqslant 0$ bedeutet $x\geqslant 0$ und $x\leqslant 3/2$, also $0\leqslant x\leqslant 3/2$. Da wir im 1. Fall nur x<1 betrachten, ergibt sich also $0\leqslant x<1$.

 $x \leq 0$ und $3 - 2x \leq 0$ bedeutet $x \leq 0$ und $x \geq 3/2$, was nicht gleichzeitig möglich ist.

2. Fall: Jetzt sei 1-x<0, also x>1. Dann dreht sich bei Multiplikation mit 1-x das \geqslant um, und wir erhalten

$$2x + \frac{1}{1-x} \geqslant 1 \quad \Leftrightarrow \quad 2x(1-x) + 1 \leqslant 1 - x \quad \Leftrightarrow \quad x(3-2x) \leqslant 0.$$

Diese Ungleichung gilt genau dann, wenn $x \ge 0$ und $3 - 2x \le 0$ oder aber wenn $x \le 0$ und $3 - 2x \ge 0$.

 $x \ge 0$ und $3 - 2x \le 0$ bedeutet $x \ge 0$ und $x \ge 3/2$, also $x \ge 3/2$.

 $x \le 0$ und $3 - 2x \ge 0$ bedeutet $x \le 0$ und $x \le 3/2$, also $x \le 0$. Da wir im 2. Fall nur x > 1 betrachten, ist dies hier nicht möglich.

Insgesamt: Die Ungleichung ist genau dann erfüllt, wenn $0 \le x < 1$ oder $x \ge 3/2$.

Aufgabe 3

a) Es seien $x, y \in \mathbb{R}$ beliebig. Wegen $0 \le |x+y| \le |x| + |y|$ (Dreiecksungleichung!) erhalten wir $0 < 1 \le 1 + |x+y| \le 1 + |x| + |y|$,

woraus

$$\frac{1}{1+|x+y|} \geqslant \frac{1}{1+|x|+|y|} \quad \Leftrightarrow \quad -\frac{1}{1+|x+y|} \leqslant -\frac{1}{1+|x|+|y|} \tag{2}$$

folgt. Mit zweimaliger Verwendung des Tipps kommen wir auf

$$\frac{|x+y|}{1+|x+y|} = 1 - \frac{1}{1+|x+y|} \stackrel{\text{(2)}}{\leqslant} 1 - \frac{1}{1+|x|+|y|} = \frac{|x|+|y|}{1+|x|+|y|}.$$

Damit ist die erste behauptete Ungleichung bewiesen. Nun zur zweiten: Es gilt

$$\begin{aligned} |x| + |y| \geqslant |x| \geqslant 0 \\ \Rightarrow 1 + |x| + |y| \geqslant 1 + |x| \geqslant 1 > 0 \\ \Rightarrow \frac{1}{1 + |x| + |y|} \leqslant \frac{1}{1 + |x|} \\ \stackrel{|x| \geqslant 0}{\Rightarrow} \frac{|x|}{1 + |x| + |y|} \leqslant \frac{|x|}{1 + |x|}. \end{aligned}$$

Ebenso (vertausche x und y) bekommen wir

$$\frac{|y|}{1+|x|+|y|} \leqslant \frac{|y|}{1+|y|}.$$

Damit ergibt sich

$$\frac{|x|+|y|}{1+|x|+|y|} = \frac{|x|}{1+|x|+|y|} + \frac{|y|}{1+|x|+|y|} \leqslant \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}.$$

- b) Wiederum seien $x, y \in \mathbb{R}$ beliebig. Wir betrachten die beiden Fälle $x y \ge 0$ und x y < 0.
 - 1. Fall: $x \ge y$. Dann ist |x y| = x y, und es gilt

$$\frac{x+y+|x-y|}{2} = \frac{x+y+x-y}{2} = \frac{2x}{2} = x = \max\{x,y\},$$

$$\frac{x+y-|x-y|}{2} = \frac{x+y-(x-y)}{2} = \frac{2y}{2} = y = \min\{x,y\}.$$

2. Fall: x < y. Dann ist |x - y| = -(x - y) = -x + y, und es gilt

$$\frac{x+y+|x-y|}{2} = \frac{x+y-x+y}{2} = \frac{2y}{2} = y = \max\{x,y\},$$
$$\frac{x+y-|x-y|}{2} = \frac{x+y+x-y}{2} = \frac{2x}{2} = x = \min\{x,y\}.$$

Aufgabe 4

a) Mit quadratischer Ergänzung erkennen wir

$$x^{2} - x + 2 = x^{2} - x + \frac{1}{4} - \frac{1}{4} + 2 = \left(x - \frac{1}{2}\right)^{2} + \frac{7}{4} \geqslant \frac{7}{4}.$$

Wegen $(\frac{1}{2})^2 - \frac{1}{2} + 2 = \frac{7}{4} \in \{x^2 - x + 2 : x \in \mathbb{R}\}$ folgt

$$\min\{x^2 - x + 2 : x \in \mathbb{R}\} = \inf\{x^2 - x + 2 : x \in \mathbb{R}\} = \frac{7}{4}.$$

Da $\{x^2 - x + 2 : x \in \mathbb{R}\}$ nach oben unbeschränkt ist, existieren Maximum und Supremum von $\{x^2 - x + 2 : x \in \mathbb{R}\}$ nicht.

5

b) Wir erkennen sofort, dass $B:=\{(-1)^n+\frac{1}{n}:n\in\mathbb{N}\}$ nach oben beschränkt ist. Zur Bestimmung des Supremums, also der kleinsten oberen Schranke, bemerken wir, dass der Ausdruck $(-1)^n+\frac{1}{n}$ für ungerade natürliche Zahlen $\leqslant 0$ ist. Da $(-1)^n=1$ für gerade $n\in\mathbb{N}$ gilt und $n\mapsto\frac{1}{n}$ fallend ist, folgern wir aus $(-1)^n+\frac{1}{n}\leqslant (-1)^2+\frac{1}{2}=\frac{3}{2}$: sup $B=\max B=\frac{3}{2}$.

Nun zur unteren Schranke. Wir behaupten: inf $B=-1\notin B$, d.h. das Minimum von B existiert nicht.

Wir müssen uns zunächst davon überzeugen, dass -1 überhaupt eine untere Schranke von B ist. Für alle $n \in \mathbb{N}$ gilt in der Tat

$$(-1)^n + \frac{1}{n} \geqslant (-1)^n \geqslant -1.$$

Nun zeigen wir, dass -1 auch die größte untere Schranke ist. Dazu nehmen wir an, dass es eine größere untere Schranke K gibt, etwa $K = -1 + \varepsilon$ mit einem $\varepsilon > 0$, und führen dies zu einem Widerspruch. Es soll also gelten

$$K \leqslant (-1)^n + \frac{1}{n}$$
 für alle $n \in \mathbb{N}$.

Da dies insbesondere für ungerade n gilt, folgt für alle ungeraden $n \in \mathbb{N}$

$$-1+\varepsilon\leqslant -1+\frac{1}{n}\quad\Leftrightarrow\quad \varepsilon\leqslant\frac{1}{n}\quad\Leftrightarrow\quad n\leqslant\frac{1}{\varepsilon}.$$

Dies kann jedoch nicht sein, weil die Menge der ungeraden natürlichen Zahlen nicht nach oben beschränkt ist. Also ist die Annahme falsch, und es gilt $-1 = \inf B$.

c) Die Menge $C := \{x + \frac{1}{x} : 0 < x \le 42\}$ ist nicht nach oben beschränkt. Wäre nämlich Γ eine obere Schranke von C, so müsste

$$\forall x \in (0, 42]: \quad x + \frac{1}{x} \leqslant \Gamma$$

gelten. Insbesondere könnten wir dann $x=\frac{1}{n}\in(0,42]$ einsetzen und erhielten: $\frac{1}{n}+n\leqslant\Gamma$ für alle $n\in\mathbb{N}$. Erst recht hätten wir dann $n\leqslant\Gamma$ für alle $n\in\mathbb{N}$, im Widerspruch dazu, dass \mathbb{N} nicht nach oben beschränkt ist. Somit existieren weder Supremum noch Maximum von C.

Die Menge C ist aber nach unten durch 2 beschränkt, denn für x>0 erhalten wir durch Multiplikation mit x

$$x + \frac{1}{x} \geqslant 2 \quad \Leftrightarrow \quad x^2 + 1 \geqslant 2x \quad \Leftrightarrow \quad x^2 - 2x + 1 \geqslant 0 \quad \Leftrightarrow \quad (x - 1)^2 \geqslant 0$$

und letzteres ist offensichtlich wahr. Zudem gilt $2 \in A$ (man setze x=1). Damit wissen wir: Keine Zahl > 2 kann untere Schranke von C sein. Also ist inf C=2 und wegen $2 \in C$ folgt auch min C=2.

d) Wir setzen $D := \{\frac{x^2}{1+x^2} : x \in \mathbb{R}\}$. Offenbar gilt $x^2(1+x^2)^{-1} \ge 0$ für alle $x \in \mathbb{R}$. Außerdem ist $0 \in D$ (man setze x = 0). Damit folgt: Infimum und Minimum von D existieren, und es ist inf $D = \min D = 0$.

Die Menge D ist nach oben durch 1 beschränkt, denn wegen $1 + x^2 > 0$ gilt

$$\frac{x^2}{1+x^2} \leqslant 1 \quad \Leftrightarrow \quad x^2 \leqslant 1+x^2.$$

Die letzte Ungleichung ist natürlich für alle $x \in \mathbb{R}$ erfüllt. Wir zeigen nun, dass 1 sogar die kleinste obere Schranke ist. Sei $\Gamma < 1$ beliebig; wir wollen zeigen, dass Γ keine obere Schranke von D ist. Wir müssen also ein $x \in \mathbb{R}$ finden mit

$$\frac{x^2}{1+x^2} > \Gamma.$$

Dies ist äquivalent zu

$$x^2 > \Gamma(1+x^2)$$
, also $(1-\Gamma)x^2 > \Gamma$, d.h. $x^2 > \frac{\Gamma}{1-\Gamma}$

und die letzte Ungleichung ist für hinreichend große x offenbar erfüllt.

Aufgabe 5

Zunächst zum Supremum: Da A und B beschränkt, also insbesondere nach oben beschränkt sind, existieren $\alpha := \sup A$ und $\beta := \sup B$. Wir müssen nun zeigen, dass A + B nach oben beschränkt ist und $\sup(A + B) = \alpha + \beta$ gilt. Dazu müssen wir zwei Dinge beweisen: Zum einen, dass $\alpha + \beta$ eine obere Schranke von A + B ist; zum anderen, dass dies auch die kleinste obere Schranke ist. Wählen wir ein beliebiges $x \in A + B$, so gibt es $a \in A$ und $b \in B$ mit x = a + b. Da α bzw. β obere Schranken für A bzw. B sind, gilt $a \leqslant \alpha$ und $b \leqslant \beta$. Addieren dieser beiden Gleichungen liefert

$$x = a + b \leqslant \alpha + \beta.$$

Damit wissen wir, dass $\sup(A+B) \leq \alpha + \beta$ ist, d. h. A+B ist nach oben beschränkt und $\alpha + \beta$ ist eine obere Schranke.

Aber ist dies auch die *kleinste* obere Schranke? Dies können wir garantieren, wenn wir zeigen: Keine Zahl $< \alpha + \beta$ ist obere Schranke, d. h. zu jeder Zahl $\Gamma < \alpha + \beta$ existiert ein $x \in A + B$ mit $x > \Gamma$. Sei also $\Gamma < \alpha + \beta$ beliebig. Dann ist $\Gamma - \alpha < \beta$ und, da β die *kleinste* obere Schranke von B ist, muss ein $b \in B$ existieren mit $b > \Gamma - \alpha$. Es gilt also $\alpha > \Gamma - b$. Daher existiert wiederum ein $a \in A$ mit $a > \Gamma - b$, d. h. es ist $a + b > \Gamma$, und wegen $a + b \in A + B$ kann damit Γ keine obere Schranke von A + B sein.

Nun zum Infimum: Da A und B nach unten beschränkt sind, folgt genau wie oben, dass auch A+B nach unten beschränkt ist. Aus der Vorlesung kennen wir das folgende Resultat: Sei $\emptyset \neq M \subset \mathbb{R}$, M sei beschränkt. Setze $-M := \{-x : x \in M\}$. Dann ist γ genau dann eine untere Schranke von M, wenn $-\gamma$ obere Schranke von -M ist. Hieraus folgt $\inf(M) = -\sup(-M)$. Damit erhalten wir

$$\inf(A+B) = -\sup(-(A+B)) = -\sup((-A) + (-B)) = -(\sup(-A) + \sup(-B))$$

= -(-\inf A + (-\inf B)) = \inf A + \inf B.