WS 2017/18 18.10.2017

Dr. S. Wugalter

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik

1. Übungsblatt

Aufgabe 1

Negieren Sie folgende Aussagen:

- Alle Karlsruher fahren mit dem Fahrrad und der Straßenbahn.
- Ich gehe ins Kino, wenn "Herr der Ringe" oder "James Bond" laufen.
- Wenn morgen schönes Wetter ist, gehen alle Studierenden in den Schlossgarten.
- **d**) Es gibt einen Menschen, dem Mathematik keinen Spaß macht.

Aufgabe 2

Betrachten Sie die beiden Aussagen K: "Peter hat kein Kind" und T: "Peter hat keine Tochter". Was lässt sich über die Aussagen $K \Rightarrow T$ bzw. $T \Rightarrow K$ sagen?

Aufgabe 3

Für jedes $j \in \mathbb{N}$ sei die Menge

 $S_j := \{x : x \text{ studient in Karlsruhe und ist im } j\text{-ten Hochschulsemester}\}$

gegeben. Weiter seien E, P bzw. G die Mengen der Elektrotechnik-, Physik- bzw. Geodäsie-Studierenden in Karlsruhe. Drücken Sie folgende Mengen mittels S_j , E, P und G aus:

- Die Menge all derer, die in Karlsruhe im ersten Hochschulsemester sind und Physik studieren.
- Die Menge aller Karlsruher Studierenden, die im ersten oder dritten Hochschulsemester sind, aber nicht Elektrotechnik studieren.
- Die Menge aller Studierenden in Karlsruhe.

Aufgabe 4

Seien M_1 , M_2 und M_3 Teilmengen einer Menge M. Zeigen Sie:

- a) $M_1 \subset M_2 \Leftrightarrow M \setminus M_2 \subset M \setminus M_1$.
- **b)** $M_1 \subset M_2 \text{ und } M_2 \subset M_3 \Rightarrow M_1 \subset M_3.$
- c) die Äquivalenz folgender Aussagen:
- i) $M_1 \subset M_2$; ii) $M_1 \cap M_2 = M_1$; iii) $M_1 \cup M_2 = M_2$.

Aufgabe 5

- a) Gegeben seien die Mengen $M_1 = \{2, 4, 7\}$ und $M_2 = \{2, 4, 8, 9\}$. Geben Sie jeweils eine injektive, eine nicht injektive, eine surjektive und eine nicht surjektive Abbildung von M_1 nach M_2 bzw. von M_2 nach M_1 an. Existieren auch bijektive Abbildungen?
- b) Es seien X, Y und Z Mengen sowie $f: X \to Y$ und $g: Y \to Z$ Funktionen. Weiter sei $h:=g \circ f$ die Komposition von f und g. Zeigen Sie
 - i) Sind f und g bijektiv, so ist auch h bijektiv.
 - ii) Ist h surjektiv und g injektiv, so ist f surjektiv.

Aufgabe 6

Sei M eine Menge. Für $M_1, M_2 \subset M$ definiere die symmetrische Differenz von M_1 und M_2 durch

$$M_1 \Delta M_2 := (M_1 \setminus M_2) \cup (M_2 \setminus M_1) = (M_1 \cup M_2) \setminus (M_1 \cap M_2).$$

Zeigen Sie:

- a) $M_1 \Delta M_1 = \emptyset$ für alle $M_1 \subset M$.
- **b)** $M_1 \Delta \emptyset = M_1$ für alle $M_1 \subset M$.
- c) $M_1 \Delta (M_2 \Delta M_3) = (M_1 \Delta M_2) \Delta M_3$ für alle $M_1, M_2, M_3 \subset M$.

Hinweis: Machen Sie sich anhand einer Skizze klar, was die Operation Δ bewirkt.

Hinweis In der großen Übung werden aller Voraussicht nach die folgenden Aufgaben besprochen: 1a),b), 4,5 und 6. Die restlichen werden in den Tutorien behandelt.