WS 2017/18 25.10.2017

Dr. S. Wugalter

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik

2. Übungsblatt

Aufgabe 1

Für $i \in \{1, 2, 3\}$ seien die Abbildungen $f_i : D_i \to \mathbb{R}$ definiert durch

$$f_1(x) = \frac{1}{x-1}$$
, $f_2(x) = \frac{x+1}{x-1}$, $f_3(x) = x^2 + x + 1$.

- a) Bestimmen Sie für jede Abbildung f_i den maximalen Definitionsbereich $D_i \subset \mathbb{R}$ sowie den Bildbereich $f_i(D_i)$.
- **b)** Welche Abbildungen sind injektiv? Geben Sie zu den injektiven Abbildungen jeweils die Umkehrabbildung an.
- c) Welche Kompositionen $f_i \circ f_j$ sind erlaubt? Ist $f_2 \circ (f_1 \circ f_3)$ erlaubt?
- **d)** Geben Sie die Abbildung $f_1 \circ f_2$ explizit an.

Aufgabe 2

Bestimmen Sie alle $x \in \mathbb{R}$ mit

a)
$$|x-4| = |x+1|$$
;

b)
$$|2x| > |5 - 2x|;$$

c)
$$|2 - |2 - x|| \leq 1$$
;

d)
$$|x+1|+|x-1|>2$$
;

e)
$$\frac{3x}{1+|x|} < 4x^2;$$

f)
$$2x + \frac{1}{1-x} \geqslant 1$$
.

Aufgabe 3

Beweisen Sie, dass für alle $x, y \in \mathbb{R}$ gilt:

a)
$$\frac{|x+y|}{1+|x+y|} \le \frac{|x|+|y|}{1+|x|+|y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}$$
;

Tipp: Verwenden Sie $\frac{a}{1+a} = \frac{a+1-1}{1+a} = 1 - \frac{1}{1+a}$ für $a \neq -1$.

b)
$$\max\{x,y\} = \frac{x+y+|x-y|}{2}$$
 und $\min\{x,y\} = \frac{x+y-|x-y|}{2}$.

Aufgabe 4

Entscheiden Sie jeweils, ob die Mengen Supremum, Infimum, Maximum bzw. Minimum besitzen. Bestimmen Sie gegebenenfalls diese Werte.

a)
$$\{x^2 - x + 2 : x \in \mathbb{R}\}$$

b)
$$\{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$$

c)
$$\left\{ x + \frac{1}{x} : 0 < x \le 42 \right\}$$

$$\mathbf{d)} \quad \left\{ \frac{x^2}{1+x^2} : x \in \mathbb{R} \right\}$$

Aufgabe 5

Die Mengen A und B seien beschränkte, nichtleere Teilmengen von \mathbb{R} . Zeigen Sie, dass dann auch $A+B:=\{a+b:a\in A \text{ und }b\in B\}=\{x:\exists a\in A,b\in B:x=a+b\}$ eine beschränkte Menge ist und

$$\sup(A+B) = \sup A + \sup B$$
 sowie $\inf(A+B) = \inf A + \inf B$

gelten. vfill

Hinweis In der großen Übung werden aller Voraussicht nach die folgenden Aufgaben besprochen: $\mathbf{2}, \, \mathbf{4}, \, \mathbf{5}$. Die restlichen werden in den Tutorien behandelt.