Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik

9. Übungsblatt

Aufgabe 1

Die Funktion $f \colon [-1,1] \to \mathbb{R}$ ist gegeben durch

$$f(x) = \begin{cases} \frac{1 - \sqrt{1 - x^2}}{x} & \text{für } 0 < |x| \leqslant 1 \\ 0 & \text{für } x = 0 \end{cases}.$$

- a) Zeigen Sie, dass f stetig ist.
- b) Bestimmen Sie den Wertebereich f([-1,1]) von f. Hinweis: Zeigen Sie zunächst, dass $|f(x)| \le 1$ für alle $x \in [-1,1]$ gilt.

c)

Aufgabe 2

a) Bestimmen Sie Real- und Imaginärteil, Betrag und Argument von

$$z_1 = (1 - i\sqrt{3})^{42}, \qquad z_2 = \left(\frac{1 + \sqrt{3}i}{1 - \sqrt{3}i}\right)^{201}.$$

- b) Es sei $t \in (0, 2\pi)$. Ermitteln Sie die Polarkoordinaten von $z(t) := 1 e^{it}$.
- c) Gegeben sei die komplexe Zahl $z = \cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)$. Berechnen Sie z^3 und z^{150} .

Aufgabe 3

Zeigen Sie die Identitäten

- a) $\tan(x+y) = \frac{\tan x + \tan y}{1 \tan x \tan y}$ für alle $x, y \in \mathbb{R}$ mit $x, y, x + y \notin \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\};$
- **b)** $(\cosh x + \sinh x)^n = \cosh(nx) + \sinh(nx)$ für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$;
- c) Artanh $x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ für alle $x \in (-1,1)$.

Aufgabe 4

Bestimmen Sie alle $x \in \mathbb{R}$, für die gilt

i)
$$2^{x-1} + 3^{x+1} = 2^{x+4} + 3^{x-1}$$
; ii) $x^{\log_{10} x} = 100 x$.

Aufgabe 5

Für jedes $n \in \mathbb{N}$ ist die Funktion $f_n : \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f_n(x) = \begin{cases} x^n \sin(x^{-1}) & \text{für } x \neq 0, \\ 0 & \text{für } x = 0. \end{cases}$$

Untersuchen Sie, für welche n die Funktion an der Stelle 0 stetig ist und für welche $n \in \mathbb{N}$ sie differenzierbar ist.

Hinweis In der großen Übung werden aller Voraussicht nach die folgenden Aufgaben besprochen: 1, 2a), 3c), 5. Die restlichen werden in den Tutorien behandelt.