Prof. Dr. Dirk Hundertmark

Dr. Matthias Uhl

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik inkl. Komplexe Analysis und Integraltransformationen

3. Übungsblatt

Aufgabe 11

Im $\mathbb{R}^{4\times4}$ bzw. $\mathbb{R}^{3\times3}$ sind die folgenden Matrizen gegeben:

$$A = \begin{pmatrix} 0 & 3 & -1 & 1 \\ 1 & -3 & 1 & -1 \\ -5 & 1 & 0 & 0 \\ 0 & 6 & -2 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} -1 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 3 & 1 \\ 4 & 4 & 2 \\ 2 & -2 & 0 \end{pmatrix}.$$

a) Zeigen Sie, dass A und B regulär sind. Ist C regulär? Bestimmen Sie $A^{-1}, B^{-1}, (AB)^{-1}, (A^T)^{-1}$ sowie $((AB)^T)^{-1}$.

b) Lösen Sie die linearen Gleichungssysteme
$$Ax = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
 und $(AB)x = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$.

Aufgabe 12

a) Wenden Sie das Gram-Schmidt-Verfahren auf die folgenden Vektoren aus \mathbb{C}^3 an:

$$x_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad x_2 = \begin{pmatrix} 2 \\ 2i \\ 0 \end{pmatrix}, \qquad x_3 = \begin{pmatrix} 5 \\ 3i \\ 1 \end{pmatrix}.$$

b) Seien
$$y_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$
, $y_2 = \begin{pmatrix} 5 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $y_3 = \begin{pmatrix} -3 \\ -3 \\ 1 \\ -3 \end{pmatrix}$.

Geben Sie eine Orthonormalbasis von $lin\{y_1, y_2, y_3\}$ an.

Aufgabe 13

Es sei V ein \mathbb{K} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind. Geben Sie jeweils einen Beweis bzw. ein Gegenbeispiel an.

- a) Ist $x \in V$ und gilt $\langle x, y \rangle = 0$ für alle $y \in V$, so folgt x = 0.
- **b)** Es seien $x_1, \ldots, x_n, x \in V$. Ist $x \neq 0$ und ist x orthogonal zu jedem Vektor aus $\lim\{x_1, \ldots, x_n\}$, so folgt $\lim\{x_1, \ldots, x_n\} \neq V$.

Definition: Eine Matrix $A \in \mathbb{C}^{n \times n}$ mit $A^*A = I_n$ heißt unitär.

Aufgabe 14

- a) Begründen Sie, dass eine Matrix $A \in \mathbb{C}^{n \times n}$ genau dann unitär ist, wenn ihre Spalten eine Orthonormalbasis des \mathbb{C}^n bilden.
- b) Gegeben seien

$$\begin{pmatrix} i/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1/2 \\ -i/2 \\ (1-i)/2 \end{pmatrix}.$$

Ergänzen Sie einen dritten Vektor so, dass die Vektoren die Spalten einer unitären Matrix bilden.

- c) Sei $A \in \mathbb{C}^{n \times n}$ eine unitäre Matrix.
 - i) Rechnen Sie nach, dass $\langle Az, Az \rangle = \langle z, z \rangle$ für alle $z \in \mathbb{C}^n$ gilt.
 - ii) Sei $\lambda \in \mathbb{C}$ so, dass es einen Vektor $z \in \mathbb{C}^n \setminus \{0\}$ gibt mit $Az = \lambda z$. Zeigen Sie, dass dann $|\lambda| = 1$ gilt.