Sommersemester 2012 06.06.2012

Prof. Dr. Dirk Hundertmark

Dr. Matthias Uhl

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik inkl. Komplexe Analysis und Integraltransformationen

8. Übungsblatt

Aufgabe 37

Skizzieren Sie folgende Kurven und berechnen Sie deren Längen (bzgl. der Euklid-Norm $\|\cdot\|_2$).

- a) $\gamma \colon [-1,1] \to \mathbb{R}^2, \ t \mapsto (t,|t|)$
- **b)** $\gamma \colon [0, 2\pi] \to \mathbb{R}^2, \ t \mapsto (t \sin t, 1 \cos t)$
- c) $z: [0, 2\pi] \to \mathbb{C}, \ \varphi \mapsto z(\varphi) := \varphi e^{i\varphi}$

Hinweis zur Berechnung der Längen: b) Schreiben Sie $\cos t = \cos(\frac{1}{2}t + \frac{1}{2}t)$ und verwenden Sie das Additionstheorem für Cosinus. c) Es gilt $\int \sqrt{1+\varphi^2} \,d\varphi = \frac{1}{2}(\operatorname{Arsinh}\varphi + \varphi\sqrt{1+\varphi^2})$.

Aufgabe 38

Die Kurve $\gamma \colon [-\sqrt{3}/2, \sqrt{2}/2] \to \mathbb{R}^3$ ist gegeben durch

$$\gamma(t) = \begin{pmatrix} \arcsin t \\ t \\ \sqrt{1 - t^2} \end{pmatrix}, \qquad t \in \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2} \right].$$

Ist γ eine reguläre Kurve? Berechnen Sie die Länge (bzgl. der Euklid-Norm $\|\cdot\|_2$) der Kurve γ und bestimmen Sie die Darstellung von γ bezüglich der Bogenlänge.

Aufgabe 39

Bestimmen Sie für die folgenden Funktionen die partiellen Ableitungen.

- a) $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^3 2x^2y^2 + 4xy^3 + y^4 + 10$
- **b)** $f: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto (x^2 + y^2)e^{xy}$
- c) $f: \mathbb{R}^2 \times (0, \infty) \to \mathbb{R}, \ (x, y, z) \mapsto xe^y/z$

Berechnen Sie auch die partiellen Ableitungen der partiellen Ableitungen. Ermitteln Sie zusätzlich in **b)** die Richtungsableitung $\frac{\partial f}{\partial v}$ von f in Richtung v := (1, 1).

Aufgabe 40

Bestimmen Sie die Ableitungen der folgenden Funktionen.

- a) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x, y, z) = (xy^2z^3e^{xy^2z^3}, x^2e^y + \sin x)$
- **b)** $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x,y) = (ye^x + x \sinh y, y^4 + 3x^2 \sin y, 4y x^3)$
- c) $f:(0,\infty)\times(0,2\pi)\times(-\pi/2,\pi/2)\to\mathbb{R}^3, f(r,\varphi,\theta)=(r\cos\varphi\,\cos\theta,\,r\sin\varphi\,\cos\theta,\,r\sin\theta)$
- **d)** $f: \mathbb{R} \times (0, \infty) \times \mathbb{R}^2 \to \mathbb{R}, \ f(w, x, y, z) = x^y$

Berechnen Sie in **c**) zusätzlich die *Funktionaldeterminante* det $(Df)(r, \varphi, \theta)$ für jeden Punkt $(r, \varphi, \theta) \in (0, \infty) \times (0, 2\pi) \times (-\pi/2, \pi/2)$.

Aufgabe 41

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei definiert durch

$$f(x,y) := \begin{cases} \frac{y^3 - x^2y}{x^2 + y^2} & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

- a) Zeigen Sie, dass f auf \mathbb{R}^2 stetig ist.
- b) Berechnen Sie in jedem Punkt die partiellen Ableitungen von f.
- c) Sind die partiellen Ableitungen von f im Punkt (0,0) stetig?
- **d)** Bestimmen Sie die Richtungsableitung $\frac{\partial f}{\partial v}(0,0)$ für jede Richtung v, für die das möglich ist. Für welche v gilt $\frac{\partial f}{\partial v}(0,0) = \langle \operatorname{grad} f(0,0), v \rangle$?
- e) Untersuchen Sie, in welchen Punkten f differenzierbar ist. Berechnen Sie dort Df.

Aufgabe 42

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei im Punkt $(x_0, y_0) \in \mathbb{R}^2$ differenzierbar und für die Richtungen u := (1, 2) und v := (-1, 1) gelte

$$\frac{\partial f}{\partial u}(x_0, y_0) = -1$$
 sowie $\frac{\partial f}{\partial v}(x_0, y_0) = 2$.

Bestimmen Sie $\frac{\partial f}{\partial w}(x_0, y_0)$ für w := (1, 1). Geben Sie die Richtung $h \in \mathbb{R}^2$ mit $||h||_2 = 1$ an, für die $\frac{\partial f}{\partial h}(x_0, y_0)$ maximal wird.

Die **Prüfungen** zu HM II und KAI finden am Montag, den 17.09.2012, statt. Zur Teilnahme ist eine Anmeldung erforderlich. **Anmeldeschluss: Freitag, 20.07.2012.** Weitere Informationen zu den Prüfungen entnehmen Sie bitte der Vorlesungshomepage www.math.kit.edu/iana1/lehre/hm2etec2012s/.