Sommersemester 2012 12.07.2012

Prof. Dr. Dirk Hundertmark

Dr. Matthias Uhl

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik inkl. Komplexe Analysis und Integraltransformationen

13. Übungsblatt

Aufgabe 74

In welchen Punkten sind die folgenden Funktionen $F: \mathbb{C} \to \mathbb{C}$ komplex differenzierbar, wo sind sie holomorph? Bestimmen Sie gegebenenfalls F'.

a)
$$F(z) = \begin{cases} e^{-1/z^4} & \text{für } z \neq 0 \\ 0 & \text{für } z = 0 \end{cases}$$

b)
$$F(x+iy) = \sin x \sin y - i \cos x \cos y \quad (x, y \in \mathbb{R})$$

c)
$$F(z) = z \operatorname{Re} z$$

Aufgabe 75

Sei $a \in \mathbb{R}$. Bestimmen Sie jeweils eine stückweise stetige, exponentiell beschränkte Funktion $f \colon [0, \infty) \to \mathbb{C}$ mit

a)
$$f(t) \circ - \bullet \ln(\frac{s+a}{s-a})$$
 für $s \in \mathbb{R}$ mit $s > |a|$;

b)
$$f(t) \circ - \mathbf{b} \ln(1 - \frac{a^2}{c^2})$$
 für $s \in \mathbb{R}$ mit $s > |a|$.

Aufgabe 76

Berechnen Sie jeweils für die Funktion F und die Kurve γ das Kurvenintegral $\int_{\gamma} F(z) dz$.

a)
$$F(z) = \overline{z}z^2$$
, $\gamma(t) = e^{i(\pi - t)}$, $0 \leqslant t \leqslant \frac{\pi}{2}$

b)
$$F(z) = |z|^2$$
, γ sei der positiv orientierte Rand von $\{z \in \mathbb{C} : \operatorname{Re} z, \operatorname{Im} z \in (0,1)\}$

Aufgabe 77

Berechnen Sie den Wert der folgenden Kurvenintegrale.

a)
$$\int_{|z|=2} \frac{z^3}{z^2+1} dz$$

$$\mathbf{b)} \quad \int_{|z|=1} \frac{e^z}{z^2 + 2z} \, dz$$

$$\mathbf{c)} \quad \int_{|z|=4} \frac{ze^{iz}}{(z-\pi)^3} \, dz$$

d)
$$\int_{|z-2|=3} \frac{e^{i\cos z}\sin(z^4+1)-z}{(z-7)^{42}} dz$$

Der Integrationsweg soll dabei jeweils die positiv orientierte Kreislinie sein.

Aufgabe 78

Die Funktion F ist gegeben durch

$$F(z) = \frac{1}{1 - z^2} + \frac{1}{3 - z}.$$

Bestimmen Sie die Laurententwicklung von F

- a) im Kreisring $\{z \in \mathbb{C} : 1 < |z| < 3\}$.
- **b)** um den Entwicklungspunkt $z_0 = 1$, die im Punkt 1 + 3i konvergiert.

Aufgabe 79

Bestimmen Sie die isolierten Singularitäten von F sowie die Residuen in diesen Punkten.

a)
$$F(z) = \left(\frac{z+1}{z-1}\right)^2$$

b)
$$F(z) = \frac{ze^{az}}{(z-1)^2}$$
 $(a \in \mathbb{C} \text{ fest})$

c)
$$F(z) = \frac{e^z}{(z-1)^4}$$

d)
$$F(z) = ze^{\frac{1}{1-z}}$$

Aufgabe 80

Berechnen Sie folgende Kurvenintegrale mit Hilfe des Residuensatzes.

a)
$$\int_{|z|=2} \frac{e^z}{(z-1)(z+3)^2} dz$$

b)
$$\int_{|z|=9} \frac{e^z}{(z-1)(z+3)^2} \, dz$$

$$\mathbf{c)} \quad \int_{|z|=1} \frac{z}{e^{iz} - 1} \, dz$$

$$\mathbf{d)} \quad \int_{|z|=2} \exp\left(\frac{z}{1-z}\right) dz$$

e)
$$\int_{\partial G} \frac{2z}{(z-1)(z+2)(z+i)} dz$$
, wobei $G := \{ z \in \mathbb{C} : -3 < \text{Re } z < 2, -2 < \text{Im } z < 3 \}$

Der Integrationsweg soll dabei jeweils die positiv orientierte Kreislinie bzw. der positiv orientierte Rand ∂G sein.

Aufgabe 81

Untersuchen Sie, ob sich die durch $F(z)=e^{\sin z}$ definierte Funktion $F\colon\mathbb{C}\to\mathbb{C}$ um $z_0=0$ in eine Potenzreihe entwickeln lässt und für welche z diese gegebenenfalls konvergiert. Berechnen Sie dann

$$\int_{|\zeta|=1/2} \zeta \, e^{\sin(1/\zeta)} \, d\zeta \,.$$

Sprechstunde der Tutoren:

Am Montag, den 10.09.2012, findet von 14:00 bis 15:30 Uhr im Seminarraum 1C-04 (Allianz-Gebäude) eine Sprechstunde der Tutoren zur Beantwortung von Fragen zu Themen aus der HM II und KAI statt.

Die **Prüfungen** zu HM II und KAI finden am Montag, den 17.09.2012, statt. Zur Teilnahme ist eine Anmeldung erforderlich. **Anmeldeschluss: Freitag, 20.07.2012.** Weitere Informationen zu den Prüfungen entnehmen Sie bitte der Vorlesungshomepage www.math.kit.edu/iana1/lehre/hm2etec2012s/.