Prof. Dr. Dirk Hundertmark

Dr. Matthias Uhl

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik inkl. Komplexe Analysis und Integraltransformationen

Lösungsvorschläge zum 13. Übungsblatt

Aufgabe 74

a) Da die Exponentialfunktion exp und $z\mapsto -z^{-4}$ auf $\mathbb{C}\setminus\{0\}$ holomorph sind, ist F als Verkettung holomorpher Funktionen auf $\mathbb{C}\setminus\{0\}$ holomorph, also auch komplex differenzierbar. (Dort sind insbesondere die Cauchy-Riemannschen Differentialgleichungen (CRD) erfüllt.) Nach der Kettenregel gilt für jedes $z\in\mathbb{C}\setminus\{0\}$

$$F'(z) = e^{-1/z^4} (4z^{-5}) = \frac{4e^{-1/z^4}}{z^5}.$$

Nun zum Punkt $z_0 = 0$: Die Funktion F ist in 0 nicht einmal stetig, denn $re^{i\pi/4} \xrightarrow{r \to 0} 0$, aber

$$F(re^{i\pi/4}) = e^{-e^{-i\pi}/r^4} = e^{1/r^4} \xrightarrow{r \to 0} \infty$$
.

Folglich ist F in $z_0 = 0$ nicht komplex differenzierbar und damit erst recht nicht holomorph.

b) Die Funktionen $u(x,y) := \sin x \sin y$ und $v(x,y) := -\cos x \cos y$ sind offensichtlich auf \mathbb{R}^2 stetig differenzierbar. Es gilt

$$u_x(x,y) = \cos x \sin y$$
, $u_y(x,y) = \sin x \cos y$,
 $v_x(x,y) = \sin x \cos y$, $v_y(x,y) = \cos x \sin y$.

Wir prüfen die CRD nach: $u_x = v_y$ ist immer erfüllt. $u_y = -v_x$ gilt genau dann, wenn $\sin x \cos y = 0$ ist, also wenn $x = k\pi$ mit einem $k \in \mathbb{Z}$ oder $y = (m + \frac{1}{2})\pi$ mit einem $m \in \mathbb{Z}$. Genau in diesen Punkten ist F komplex differenzierbar. Da die Menge

$$M:=\left\{z\in\mathbb{C}:\operatorname{Re} z=k\pi \text{ für ein }k\in\mathbb{Z} \text{ oder }\operatorname{Im} z=(m+\frac{1}{2})\pi \text{ für ein }m\in\mathbb{Z}\right\}$$

nicht offen ist, liegt nirgends Holomorphie vor. Für $z=x+iy\in M$ mit $x,y\in\mathbb{R}$ ergibt sich

$$F'(z) = u_x(x,y) + iv_x(x,y) = \cos x \sin y + i \underbrace{\sin x \cos y}_{=0, \operatorname{da} z \in M} = \cos x \sin y.$$

c) Für $x, y \in \mathbb{R}$ gilt $F(x + iy) = (x + iy)x = x^2 + ixy =: u(x, y) + iv(x, y)$. Die Funktionen $u, v : \mathbb{R}^2 \to \mathbb{R}$ sind stetig differenzierbar mit

$$u_x(x,y) = 2x$$
, $u_y(x,y) = 0$, $v_x(x,y) = y$, $v_y(x,y) = x$.

Wegen

$$u_x(x,y) = v_y(x,y) \iff 2x = x \iff x = 0,$$

 $u_y(x,y) = -v_x(x,y) \iff 0 = -y \iff y = 0$

sind die CRD nur für (x,y)=(0,0) erfüllt. Deshalb liegt nur in z=0 komplexe Differenzierbarkeit von F vor. Da $\{0\}\subset\mathbb{C}$ nicht offen ist, ist F nirgendwo holomorph.

Wir verwenden das folgende Resultat aus der Vorlesung: Sei $f:[0,\infty)\to\mathbb{C}$ eine stückweise stetige Funktion, die von exponentieller Ordnung γ ist. Gilt $f(t) \circ F(s)$, so ist F in $\{s\in\mathbb{C}: \operatorname{Re}(s)>\gamma\}$ holomorph mit $F'(s)=\int_0^\infty -te^{-st}f(t)\,dt$, d.h.

$$-tf(t) \circ F'(s)$$
.

Deshalb ist $f(t) = -\frac{1}{t} \mathcal{L}^{-1}\{F'\}(t)$ für t > 0. Der Funktionswert von f in 0 ist irrelevant und kann beliebig definiert werden, etwa f(0) := 0.

a) Für $s \in \mathbb{R}$ mit s > |a| sei $F(s) := \ln(\frac{s+a}{s-a}) = \ln(s+a) - \ln(s-a)$. Dann ist

$$F'(s) = \frac{1}{s+a} - \frac{1}{s-a} \longrightarrow e^{-at} - e^{at}.$$

Damit erhalten wir für t > 0

$$f(t) = -\frac{1}{t} \mathcal{L}^{-1} \{ F' \}(t) = \frac{1}{t} \left(e^{at} - e^{-at} \right) = \frac{2 \sinh(at)}{t}.$$

b) Ist $F(s) := \ln(1 - \frac{a^2}{s^2}) = \ln((1 - \frac{a}{s})(1 + \frac{a}{s})) = \ln(1 - \frac{a}{s}) + \ln(1 + \frac{a}{s})$ für $s \in \mathbb{R}$ mit s > |a| gesetzt, so erhält man

$$F'(s) = \frac{a}{s^2 - as} - \frac{a}{s^2 + as} = \frac{a}{s(s-a)} - \frac{a}{s(s+a)} = -\frac{1}{s} + \frac{1}{s-a} - \frac{1}{s} + \frac{1}{s+a}$$
$$= -\frac{2}{s} + \frac{1}{s-a} + \frac{1}{s+a} - \frac{1}{s+a} - \frac{1}{s+a} + \frac{1}{s+a} - \frac{1}{s+a} + \frac{1}{s+a} - \frac{1}{s+a} + \frac{1}{s+a} - \frac{1}{s+$$

Für $f(t) := 2 \frac{1-\cosh(at)}{t}$, t > 0, und f(0) := 0 gilt somit $f(t) \circ - \bullet \ln(1 - \frac{a^2}{s^2})$.

Aufgabe 76

a) Für jedes $t \in [0, \frac{\pi}{2}]$ gilt

$$\gamma'(t) = -ie^{i(\pi - t)}$$
 und $F(\gamma(t)) = \overline{e^{i(\pi - t)}} (e^{i(\pi - t)})^2 = e^{-i(\pi - t)} e^{2i(\pi - t)} = e^{i(\pi - t)}$.

Damit ergibt sich nach Definition des (komplexen) Kurvenintegrals

$$\int_{\gamma} F(z) dz = \int_{0}^{\pi/2} F(\gamma(t)) \gamma'(t) dt = \int_{0}^{\pi/2} e^{i(\pi - t)} (-ie^{i(\pi - t)}) dt$$
$$= -ie^{2\pi i} \int_{0}^{\pi/2} e^{-2it} dt = -i \left[\frac{e^{-2it}}{-2i} \right]_{t=0}^{\pi/2} = \frac{e^{-i\pi} - e^{0}}{2} = \frac{-1 - 1}{2} = -1.$$

b) Die Kurve γ durchläuft den positiv orientierten Rand des Quadrates mit den Eckpunkten 0, 1, 1 + i und i, setzt sich also zusammen aus den vier Teilkurven

$$\gamma_1(t) = t$$
, $\gamma_2(t) = 1 + it$, $\gamma_3(t) = 1 - t + i$, $\gamma_4(t) = i(1 - t)$,

wobei jeweils $t \in [0,1]$ gilt. Somit erhält man

$$\int_{\gamma} F(z) dz = \sum_{k=1}^{4} \int_{\gamma_{k}} F(z) dz = \sum_{k=1}^{4} \int_{0}^{1} F(\gamma_{k}(t)) \gamma_{k}'(t) dt = \sum_{k=1}^{4} \int_{0}^{1} |\gamma_{k}(t)|^{2} \gamma_{k}'(t) dt$$

$$= \int_{0}^{1} t^{2} dt + \int_{0}^{1} (1+t^{2}) i dt + \int_{0}^{1} ((1-t)^{2}+1)(-1) dt + \int_{0}^{1} (1-t)^{2}(-i) dt$$

$$= \int_{0}^{1} (t^{2}-(1-t)^{2}-1+i(1+t^{2}-(1-t)^{2})) dt = \int_{0}^{1} (2t-2+2it) dt = -1+i.$$

a) Wir verwenden bei diesem Integranden die Partialbruchzerlegung

$$\frac{1}{z^2+1} = \frac{1}{(z+i)(z-i)} = \frac{i/2}{z+i} - \frac{i/2}{z-i}.$$

Da die Punkte -i und i im Inneren der Kreislinie |z|=2 liegen und die Funktion $z\mapsto iz^3/2$ im konvexen Gebiet $G=\mathbb{C}$ holomorph ist, ergibt sich mit der Cauchyschen Integralformel

$$\int_{|z|=2} \frac{z^3}{z^2 + 1} dz = \int_{|z|=2} \frac{iz^3/2}{z - (-i)} dz - \int_{|z|=2} \frac{iz^3/2}{z - i} dz$$
$$= 2\pi i \frac{iz^3}{2} \Big|_{z=-i} - 2\pi i \frac{iz^3}{2} \Big|_{z=i} = -\pi (-i)^3 + \pi i^3 = -2\pi i.$$

b) Der Integrand lässt sich hier wie folgt umschreiben

$$\frac{e^z}{z^2 + 2z} = \frac{e^z}{z(z+2)} = \frac{1}{2} \left(\frac{e^z}{z} - \frac{e^z}{z+2} \right).$$

Der Punkt 0 liegt im Inneren des Integrationsweges, der Punkt -2 dagegen im Äußeren. Folglich liefern die Cauchysche Integralformel und der Cauchysche Integralsatz

$$\int_{|z|=1} \frac{e^z}{z^2 + 2z} \, dz = \frac{1}{2} \left(\int_{|z|=1} \frac{e^z}{z} \, dz - \int_{|z|=1} \frac{e^z}{z+2} \, dz \right) = \frac{1}{2} \left(2\pi i \, e^z \big|_{z=0} - 0 \right) = \pi i \, .$$

Alternativ: Die Funktion $F(z) := \frac{e^z}{z+2}$ ist holomorph in einer Umgebung des Gebietes, das von der Kreisline |z| = 1 umlaufen wird. Wir können somit direkt die Cauchysche Integralformel anwenden und erhalten

$$\int_{|z|=1} \frac{e^z}{z(z+2)} dz = \int_{|z|=1} \frac{F(z)}{z-0} dz = 2\pi i F(0) = \pi i.$$

c) Für die durch $F(z) := ze^{iz}$ definierte, in \mathbb{C} holomorphe Funktion gilt

$$F'(z) = e^{iz} + z(ie^{iz}) = (1+iz)e^{iz}, F''(z) = ie^{iz} + (1+iz)(ie^{iz}) = (2i-z)e^{iz},$$

und wegen $|\pi| < 4$ erhalten wir mit der Cauchyschen Integralformel für Ableitungen

$$\int_{|z|=4} \frac{ze^{iz}}{(z-\pi)^3} dz = 2\pi i \frac{F''(\pi)}{2!} = \pi i (2i-z)e^{iz}|_{z=\pi} = \pi i (2i-\pi)(-1) = 2\pi + i\pi^2.$$

d) Die Nullstelle $z_0=7$ des Nenners des Integranden liegt außerhalb der Kreislinie |z-2|=3, denn |7-2|=5>3. Der Integrand ist also holomorph in dem konvexen und damit einfach zusammenhängenden Gebiet $G:=\{z\in\mathbb{C}:|z-2|<4\}$, in welchem auch der einfach geschlossene, positiv orientierte Integrationsweg verläuft. Aus dem Cauchyschen Integralsatz folgt somit

$$\int_{|z-2|=3} \frac{e^{i\cos z} \sin(z^4+1) - z}{(z-7)^{42}} dz = 0.$$

Vorüberlegung: Will man

$$\frac{1}{z-a}$$

um den Punkt $z_0 \neq a$ in eine Laurentreihe entwickeln, so gibt es dafür zwei Möglichkeiten. Für $|z-z_0| < |a-z_0|$ hat man die Potenzreihenentwicklung

$$\frac{1}{z-a} = \frac{1}{(z-z_0) + (z_0 - a)} = \frac{1}{z_0 - a} \cdot \frac{1}{\frac{z-z_0}{z_0 - a} + 1} = \frac{1}{z_0 - a} \cdot \frac{1}{1 - \frac{z-z_0}{a-z_0}}$$

$$= \frac{1}{z_0 - a} \sum_{k=0}^{\infty} \left(\frac{z-z_0}{a-z_0}\right)^k = -\sum_{k=0}^{\infty} \frac{(z-z_0)^k}{(a-z_0)^{k+1}}.$$
(*)

Für $|z-z_0| > |a-z_0|$ dagegen ergibt sich

$$\frac{1}{z-a} = \frac{1}{(z-z_0) + (z_0 - a)} = \frac{1}{z-z_0} \cdot \frac{1}{1 + \frac{z_0 - a}{z-z_0}} = \frac{1}{z-z_0} \cdot \frac{1}{1 - \frac{a-z_0}{z-z_0}}$$

$$= \frac{1}{z-z_0} \sum_{k=0}^{\infty} \left(\frac{a-z_0}{z-z_0}\right)^k = \sum_{k=0}^{\infty} \frac{(a-z_0)^k}{(z-z_0)^{k+1}}.$$
(**)

a) Für 1 < |z| < 3 gilt

$$\begin{split} F(z) &= \frac{1}{1-z^2} + \frac{1}{3-z} = \frac{1}{z^2} \cdot \frac{1}{z^{-2}-1} - \frac{1}{z-3} = -\frac{1}{z^2} \cdot \frac{1}{1-z^{-2}} - \frac{1}{z-3} \\ &= -\frac{1}{z^2} \sum_{k=0}^{\infty} (z^{-2})^k - \frac{1}{z-3} = -\sum_{k=0}^{\infty} \frac{1}{z^{2k+2}} - \frac{1}{z-3} \stackrel{(*)}{=} -\sum_{k=0}^{\infty} \frac{1}{z^{2(k+1)}} + \sum_{k=0}^{\infty} \frac{z^k}{3^{k+1}} \,. \end{split}$$

b) Die Partialbruchzerlegung des ersten Summanden von F(z) liefert die Darstellung

$$F(z) = \frac{1}{2} \left(\frac{1}{z+1} - \frac{1}{z-1} \right) - \frac{1}{z-3}.$$

Die Funktion F hat Polstellen in -1, in 1 und in 3. Da die beiden Punkte -1 und 3 von $z_0 = 1$ den Abstand 2 haben, kommen als Gebiete für die Laurententwicklung um $z_0 = 1$ nur die beiden Kreisringe

$$0 < |z - 1| < 2$$
 und $2 < |z - 1| < \infty$

in Frage. Da der Punkt 1+3i im Konvergenzgebiet liegen soll und von z_0 den Abstand |1+3i-1|=3 hat, ist der zweite Kreisring der richtige. Dort gilt gemäß (**)

$$\frac{1}{z+1} = \sum_{k=0}^{\infty} \frac{(-1-1)^k}{(z-1)^{k+1}} = \sum_{k=0}^{\infty} \frac{(-2)^k}{(z-1)^{k+1}}, \quad \frac{1}{z-3} = \sum_{k=0}^{\infty} \frac{(3-1)^k}{(z-1)^{k+1}} = \sum_{k=0}^{\infty} \frac{2^k}{(z-1)^{k+1}}.$$

Also ergibt sich für |z-1|>2

$$F(z) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-2)^k}{(z-1)^{k+1}} - \frac{1}{2} \cdot \frac{1}{z-1} - \sum_{k=0}^{\infty} \frac{2^k}{(z-1)^{k+1}} = -\frac{1}{z-1} + \sum_{k=1}^{\infty} \frac{\frac{1}{2}(-2)^k - 2^k}{(z-1)^{k+1}}.$$

a) Die Funktion

$$F(z) = \frac{(z+1)^2}{(z-1)^2}$$

hat in $z_0 = 1$ eine Polstelle zweiter Ordnung. Deshalb lässt sich das Residuum von F in $z_0 = 1$ bestimmen durch

$$\operatorname{res}(F;1) = \left(\frac{d}{dz}\left((z-1)^2F(z)\right)\right)\Big|_{z=1} = \left(\frac{d}{dz}\left((z+1)^2\right)\right)\Big|_{z=1} = \left(2(z+1)\right)\Big|_{z=1} = 4.$$

Alternativ: Wir können auch die Laurententwicklung von F um $z_0 = 1$ berechnen

$$F(z) = \frac{(z+1)^2}{(z-1)^2} = \frac{z^2 + 2z + 1}{(z-1)^2} = \frac{z^2 - 2z + 1}{(z-1)^2} + \frac{4z}{(z-1)^2}$$
$$= 1 + \frac{4(z-1+1)}{(z-1)^2} = 1 + \frac{4}{z-1} + \frac{4}{(z-1)^2}$$

und hieran res(F; 1) = 4 ablesen.

b) Die Funktion

$$F(z) = \frac{ze^{az}}{(z-1)^2}$$
 $(a \in \mathbb{C} \text{ fest})$

besitzt in $z_0 = 1$ einen Pol zweiter Ordnung. Für das Residuum von F in 1 ergibt sich

$$\operatorname{res}(F;1) = \left(\frac{d}{dz} \Big((z-1)^2 F(z) \Big) \right) \Big|_{z=1} = \left(\frac{d}{dz} \Big(z e^{az} \Big) \right) \Big|_{z=1} = \left(e^{az} + z a e^{az} \right) \Big|_{z=1} = (1+a) e^a.$$

c) Die Funktion $F(z) = \frac{e^z}{(z-1)^4}$ hat in $z_0 = 1$ einen Pol der Ordnung 4. Daher ist

$$\operatorname{res}(F;1) = \frac{1}{3!} \left(\frac{d^3}{dz^3} \left((z-1)^4 F(z) \right) \right) \Big|_{z=1} = \frac{1}{6} \left(\frac{d^3}{dz^3} e^z \right) \Big|_{z=1} = \frac{1}{6} e^z \Big|_{z=1} = \frac{e}{6}.$$

d) Da F in $z_0 = 1$ eine wesentliche Singularität besitzt, können wir nicht wie zuvor vorgehen. Wir bestimmen stattdessen die zugehörige Laurentreihe um 1 und lesen das Residuum ab

$$F(z) = ze^{\frac{1}{1-z}} = z \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{1-z}\right)^n = \left((z-1)+1\right) \sum_{k=-\infty}^{0} \frac{(-1)^k}{(-k)!} (z-1)^k$$

$$= \sum_{k=-\infty}^{0} \frac{(-1)^k}{(-k)!} (z-1)^{k+1} + \sum_{k=-\infty}^{0} \frac{(-1)^k}{(-k)!} (z-1)^k$$

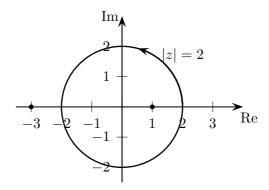
$$= \sum_{l=-\infty}^{1} \frac{(-1)^{l-1}}{(-(l-1))!} (z-1)^l + \sum_{k=-\infty}^{0} \frac{(-1)^k}{(-k)!} (z-1)^k$$

$$= (z-1) + \sum_{k=-\infty}^{0} \left(\frac{(-1)^{k-1}}{(-(k-1))!} + \frac{(-1)^k}{(-k)!}\right) (z-1)^k, \quad z \neq 1.$$

Das Residuum von F in 1 ist der Koeffizient von $(z-1)^{-1}$, also

$$\operatorname{res}(F;1) = \frac{(-1)^{-2}}{2!} + \frac{-1}{1!} = -\frac{1}{2}.$$

a) Der Integrand $F(z) := \frac{e^z}{(z-1)(z+3)^2}$ besitzt in 1 eine einfache und in -3 eine doppelte Polstelle und ist holomorph auf $\mathbb{C} \setminus \{1, -3\}$.



Da innerhalb des Integrationsweges |z|=2 nur die Polstelle 1 liegt, liefert der Residuensatz

$$\int_{|z|=2} F(z) dz = 2\pi i \operatorname{res}(F; 1) = \frac{e \pi i}{8},$$

denn für das Residuum von F in 1 gilt

$$\operatorname{res}(F;1) = (z-1)F(z)\Big|_{z=1} = \frac{e^z}{(z+3)^2}\Big|_{z=1} = \frac{e}{16}.$$

b) Nun liegen die beiden Polstellen -3 und 1 innerhalb des Integrationsweges |z| = 9. Deswegen gilt nach dem Residuensatz

$$\int_{|z|=9} F(z) dz = 2\pi i \left(\operatorname{res}(F;1) + \operatorname{res}(F;-3) \right) = 2\pi i \left(\frac{e}{16} - \frac{5e^{-3}}{16} \right) = \frac{(e - 5e^{-3})\pi i}{8},$$

da

$$\operatorname{res}(F; -3) = \left(\frac{d}{dz}(z+3)^2 F(z)\right)\Big|_{z=-3} = \left(\frac{d}{dz}\frac{e^z}{z-1}\right)\Big|_{z=-3} = \left(\frac{e^z(z-1) - e^z}{(z-1)^2}\right)\Big|_{z=-3} = \frac{-5e^{-3}}{16}.$$

c) Schreibe $F(z) := \frac{z}{e^{iz}-1}$. Der Nenner von F(z) wird genau dann 0, wenn $z = 2k\pi$ mit einem $k \in \mathbb{Z}$ gilt. Von diesen Punkten liegt nur z = 0 im Inneren des Kreises |z| = 1. Daher ist

$$\int_{|z|=1} F(z) \, dz = 2\pi i \operatorname{res}(F;0) \, .$$

Nun sieht man z.B. anhand der Darstellung

$$F(z) = \frac{z}{e^{iz} - 1} = \frac{z}{\left(1 + iz + \frac{1}{2}(iz)^2 + \cdots\right) - 1} = \frac{z}{iz - \frac{1}{2}z^2 + \cdots} = \frac{1}{i - \frac{1}{2}z + \cdots},$$

dass in z=0 eine hebbare Singularität vorliegt. Deshalb gilt $\operatorname{res}(F;0)=0$, so dass das Integral $\int_{|z|=1}F(z)\,dz$ den Wert 0 hat.

d) Sei $F(z) := e^{\frac{z}{1-z}}$. Hier liefert der Residuensatz

$$\int_{|z|=2} F(z) \, dz = 2\pi i \operatorname{res}(F;1) \, .$$

Um das Residuum res(F;1) zu berechnen, betrachten wir die Laurententwicklung von F um 1

$$F(z) = \exp\left(\frac{z}{1-z}\right) = \exp\left(-1 + \frac{1}{1-z}\right) = e^{-1}e^{-1/(z-1)} = e^{-1}\sum_{k=0}^{\infty} \frac{(-1)^k}{k!}(z-1)^{-k};$$

der Koeffizient von $(z-1)^{-1}$ lautet $-e^{-1}$. Also ist $\operatorname{res}(F;1)=-e^{-1}$ und damit

$$\int_{|z|=2} \exp\left(\frac{z}{1-z}\right) dz = -\frac{2\pi i}{e}.$$

e) Der Integrand $F(z) := \frac{2z}{(z-1)(z+2)(z+i)}$ besitzt in 1, -2 und -i jeweils einen Pol erster Ordnung und ist holomorph auf $\mathbb{C}\setminus\{1,-2,-i\}$. Da sich alle Polstellen im Inneren von G befinden, ergibt sich nach dem Residuensatz

$$\int_{\partial G} F(z) dz = 2\pi i \left(\operatorname{res}(F; 1) + \operatorname{res}(F; -2) + \operatorname{res}(F; -i) \right).$$

Wir berechnen nun die Residuen von F in den (einfachen) Polstellen

$$\operatorname{res}(F;1) = (z-1)F(z)\Big|_{z=1} = \frac{2z}{(z+2)(z+i)}\Big|_{z=1} = \frac{2}{3(1+i)} = \frac{1}{3}(1-i),$$

$$\operatorname{res}(F;-2) = (z+2)F(z)\Big|_{z=-2} = \frac{2z}{(z-1)(z+i)}\Big|_{z=-2} = \frac{4}{3(-2+i)} = -\frac{4}{15}(2+i),$$

$$\operatorname{res}(F;-i) = (z+i)F(z)\Big|_{z=-i} = \frac{2z}{(z-1)(z+2)}\Big|_{z=-i} = \frac{2i}{(i+1)(-i+2)} = \frac{1}{5}(1+3i).$$

Hiermit ist

$$\int_{\partial G} F(z) \, dz = 2\pi i \left(\frac{1}{3} \left(1 - i \right) - \frac{4}{15} \left(2 + i \right) + \frac{1}{5} \left(1 + 3i \right) \right) = 0 \, .$$

Aufgabe 81

Als Hintereinanderausführung holomorpher Funktionen ist die Funktion F auf ganz \mathbb{C} holomorph. Sie lässt sich also um $z_0 = 0$ in eine Potenzreihe entwickeln

$$F(z) = \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} z^n.$$

Diese Potenzreihe konvergiert auf der größten Kreisscheibe um $z_0 = 0$, auf der F holomorph ist. Hier konvergiert die Potenzreihe also für jedes $z \in \mathbb{C}$.

Der Integrand $\zeta F(1/\zeta)$ ist holomorph auf $\mathbb{C} \setminus \{0\}$ und für $\zeta \neq 0$, insbesondere also für $0 < |\zeta| < 1$, gilt nach den obigen Überlegungen

$$\zeta F(1/\zeta) = \zeta \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} \, \zeta^{-n} = \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} \, \zeta^{1-n} \, .$$

Nach dem Residuensatz gilt dann

$$\int_{|\zeta|=1/2} \zeta e^{\sin(1/\zeta)} d\zeta = \int_{|z|=1/2} \zeta F(1/\zeta) d\zeta = 2\pi i \operatorname{res}(\zeta \mapsto \zeta F(1/\zeta); 0),$$

und Ablesen an der Laurentreihe für $\zeta F(1/\zeta)$ ergibt

$$=2\pi i\,\frac{F''(0)}{2!}\,.$$

Wegen $F'(z) = \cos(z)F(z)$, $F''(z) = -\sin(z)F(z) + \cos^2(z)F(z)$ und F(0) = 1 ist F''(0) = 1. Das Integral ist also gleich

$$2\pi i \,\, \frac{1}{2} = \pi i \,.$$