Dr. Andreas Müller-Rettkowski

Dr. Vu Hoang

Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik inklusive Komplexe Analysis und Integraltransformationen

1. Übungsblatt

Aufgabe 1

Sei V ein Vektorraum und $v_1, \ldots, v_n \in V$.

- (a) Ist $M \subset V, 0 \in M$, so gilt $Lin(M) = Lin(M \setminus \{0\})$. Daher ist M linear abhängig.
- (b) Diese Aussage ist falsch. Beispielsweise ist $M = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \} \subset \mathbb{R}^2 = V$ linear abhängig, jedoch kann $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ nicht als Linearkombination des Nullvektors dargestellt werden.
- (c) Die Aussage ist wahr. Es gebe einen Vektor $v \in V$ mit eindeutiger Darstellung als Linearkombination der v_1, \ldots, v_n , d.h. es gebe eindeutig bestimmte $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ mit

$$v = \sum_{j=1}^{n} \alpha_j v_j.$$

Wir nehmen nun an, dass der Nullvektor eine nichttriviale Darstellung als LK der v_j hat, d.h. es gelte

$$0 = \sum_{j=1}^{n} \beta_j v_j$$

wobei die β_j nicht alle 0 sind. Dann gilt aber auch

$$v = v + 0 = \sum_{j=1}^{n} (\alpha_j + \beta_j) v_j,$$

d.h. der Vektor v besitzt zwei echt voneinander verschiedene Darstellungen als LK der v_j (einmal mit den Koeffizienten α_j and den Koeffizienten $\alpha_j + \beta_j$). Das ist aber ein Widerspruch, demzufolge können nicht alle $\beta_j \neq 0$ sein. Daraus erhalten wir die lineare Unabhängigkeit der v_1, \ldots, v_n .

- (d) Diese Aussage ist falsch. Als Gegenbeispiel wähle man $V = \mathbb{C}^2$, $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $v = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$. Bitte selber nachrechnen!
- (e) Diese Aussage ist falsch. Wähle $V = \mathbb{C}^2$, $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Bitte selber nachrechnen!

Aufgabe 2

(a) Sei zunächst $x \in \text{Lin}(x_1, \dots, x_n)$. Dann gilt mit komplexen Zahlen $\alpha_1, \dots, \alpha_n$ die Relation $x = \sum_{j=1}^n \alpha_j x_j$, d.h.

$$0 = -x + \alpha_1 x_1 + \ldots + \alpha_n x_n.$$

Die obige Zeile stellt jedoch gerade eine nichttriviale LK der Vektoren x, x_1, \ldots, x_n dar, welche 0 ergibt. Also sind x, x_1, \ldots, x_n linear abhängig.

Seien nunmehr x, x_1, \ldots, x_n linear abhängig. Dann existieren Zahlen $\alpha, \alpha_1, \ldots, \alpha_n$ (nicht alle 0) mit

$$0 = \alpha x + \alpha_1 x_1 + \ldots + \alpha_n x_n.$$

Es gilt aber $\alpha \neq 0$, denn ansonsten wären die Vektoren x_1, \ldots, x_n linear abhängig, was der Voraussetzung widerspricht. Also $x = -\frac{1}{\alpha} \sum_{j=1}^{n} \alpha_j x_j$ und somit $x \in \text{Lin}(x_1, \ldots, x_n)$.

(b) Es seien x_1, \ldots, x_n zunächst linear abhängig. Dann existieren α_j , nicht alle 0 mit $0 = \sum_{j=1}^n \alpha_j x_j$. Da die α_j nicht alle 0 sind, gibt es ein $1 \le k \le n$ mit $\alpha_j = 0$ für k < j und $\alpha_k \ne 0$. Es muss $k \ge 2$ gelten, denn ansonsten wäre $x_1 = 0$, im Widerspruch zu einer der gemachten Voraussetzungen. Dann folgt

$$x_k = \sum_{j=1}^{k-1} -\frac{\alpha_j}{\alpha_k} x_j,$$

d.h. $x_k \in \text{Lin}(x_1, \dots, x_{k-1})$. Gilt umgekehrt $x_k \in \text{Lin}(x_1, \dots, x_{k-1})$ für ein k, so liefert die inzwischen bekannte Schlussweise $(x_k$ als LK der x_1, \dots, x_{k-1} hinschreiben) die gewünschte Aussage.

Aufgabe 3

Für
$$\vec{x} = \begin{pmatrix} -2\\1\\1 \end{pmatrix}$$
 und $\vec{y} = \begin{pmatrix} 2\\0\\-2 \end{pmatrix}$ gilt
$$\vec{x} \times \vec{y} = \begin{pmatrix} -2-0\\2-4\\0-2 \end{pmatrix} = \begin{pmatrix} -2\\-2\\-2 \end{pmatrix},$$

$$(\vec{x} \times \vec{y}) \cdot \vec{x} = \begin{pmatrix} -2\\-2\\-2\\-2 \end{pmatrix} \cdot \begin{pmatrix} -2\\1\\1 \end{pmatrix} = -2 \cdot (-2) + (-2) \cdot 1 + (-2) \cdot 1 = 0$$

[dieses Ergebnis war zu erwarten, weil stets $\vec{x} \times \vec{y}$ sowohl orthogonal auf \vec{x} als auch orthogonal auf \vec{y} steht]. Für den Winkel θ , den die Vektoren \vec{x} und \vec{y} einschließen, gilt

$$\cos \theta = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|} = \frac{-2 \cdot 2 + 1 \cdot 0 + 1 \cdot (-2)}{\sqrt{4 + 1 + 1} \cdot \sqrt{4 + 4}} = \frac{-6}{\sqrt{6} \cdot \sqrt{8}} = -\sqrt{\frac{6}{8}} = -\frac{\sqrt{3}}{2}.$$

Hieraus folgt $\theta = \frac{5\pi}{6}$. Der Flächeninhalt des von \vec{x} und \vec{y} aufgespannten Parallelogramms lautet

$$\|\vec{x} \times \vec{y}\| = \|\begin{pmatrix} -2\\-2\\-2\\-2 \end{pmatrix}\| = \sqrt{(-2)^2 + (-2)^2 + (-2)^2} = \sqrt{4+4+4} = 2\sqrt{3}.$$

Aufgabe 4

- a) Im \mathbb{R}^4 sind die Vektoren $\vec{v}_1 = \begin{pmatrix} 0 \\ 8 \\ -2 \\ 4 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 3 \\ 6 \\ 2 \\ -1 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 0 \\ -4 \\ 1 \\ -2 \end{pmatrix}$ gegeben.
 - i) Offenbar ist $\vec{v}_1 = -2\vec{v}_3$. Daher gilt $\vec{v}_1 + 0\vec{v}_2 + 2\vec{v}_3 = 0$, d.h. es gibt eine nichttriviale Darstellung des Nullvektors. Also sind die Vektoren \vec{v}_1 , \vec{v}_2 , \vec{v}_3 linear abhängig. Im allgemeinen erkennt man nicht sofort, ob gegebene Vektoren linear unabhängig sind oder nicht. Um die Vektoren \vec{v}_1 , \vec{v}_2 , \vec{v}_3 auf lineare Unabhängigkeit zu prüfen, können wir \vec{v}_1 , \vec{v}_2 , \vec{v}_3 als Zeilen in eine Matrix schreiben und diese durch Zeilenumformungen auf Zeilenstufenform bringen (vgl. Kapitel 20):

$$\left(\begin{array}{cccc}
0 & 8 & -2 & 4 \\
3 & 6 & 2 & -1 \\
0 & -4 & 1 & -2
\end{array}\right)$$

[vertausche erste und zweite Zeile]

$$\left(\begin{array}{cccc}
3 & 6 & 2 & -1 \\
0 & 8 & -2 & 4 \\
0 & -4 & 1 & -2
\end{array}\right)$$

[multipliziere die dritte Zeile mit 2]

$$\left(\begin{array}{cccc}
3 & 6 & 2 & -1 \\
0 & 8 & -2 & 4 \\
0 & -8 & 2 & -4
\end{array}\right)$$

[ersetze die dritte Zeile durch die Summe der zweiten und dritten Zeile]

$$\left(\begin{array}{cccc}
3 & 6 & 2 & -1 \\
0 & 8 & -2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Da die Zeilen der letzten Matrix linear abhängig sind, sind es $\vec{v}_1, \vec{v}_2, \vec{v}_3$ auch.

- ii) Wäre $\vec{v}_2 = \alpha_1 \vec{v}_1 + \alpha_3 \vec{v}_3$ für $\alpha_1, \alpha_3 \in \mathbb{R}$, so müsste für die erste Komponente gelten: $3 = \alpha_1 \cdot 0 + \alpha_3 \cdot 0 = 0$. Dies ist nicht möglich. Deshalb gibt es keine $\alpha_1, \alpha_3 \in \mathbb{R}$ mit $\vec{v}_2 = \alpha_1 \vec{v}_1 + \alpha_3 \vec{v}_3$.
- b) Seien $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ mit $\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \alpha_3 \vec{v}_3 = 0$, also mit

$$\begin{cases} \alpha_1 + \alpha_3 a = 0 \\ \alpha_2 + \alpha_3 = 0 \\ \alpha_1 - \alpha_2 + \alpha_3 = 0 \end{cases}$$

bzw. äquivalent hierzu

$$\begin{cases} \alpha_1 &= -a\alpha_3\\ \alpha_2 &= -\alpha_3\\ \alpha_1 &= \alpha_2 - \alpha_3 \stackrel{\alpha_2 = -\alpha_3}{=} -\alpha_3 - \alpha_3 = -2\alpha_3 \end{cases}$$

Somit gibt es nur für a=2 eine Lösung, die sich von $\alpha_1=\alpha_2=\alpha_3=0$ unterscheidet (z.B. $\alpha_1=2,\alpha_2=1,\alpha_3=-1,$ dann gilt $2\vec{v}_1+\vec{v}_2-\vec{v}_3=\vec{0}$).

Also sind die Vektoren $\vec{v}_1, \vec{v}_2, \vec{v}_3$ nur für a=2 linear abhängig.