Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski

Dr. Vu Hoang

Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik inklusive Komplexe Analysis und Integraltransformationen

11. Übungsblatt

Aufgabe 50

 $\tilde{u}, \tilde{v} \text{ sind durch}$

$$\tilde{u}(r,\phi) = u(r\cos\phi, r\sin\phi), \quad \tilde{v}(r,\phi) = v(r\cos\phi, r\sin\phi)$$

definiert, $(r, \phi) \in (0, \infty) \times \mathbb{R}$. Man beachte, dass \tilde{u}, \tilde{v} 2π -periodisch in ϕ sind, d.h.

$$\tilde{u}(r, \phi + 2\pi) = \tilde{u}(r, \phi), \quad \tilde{v}(r, \phi + 2\pi) = \tilde{v}(r, \phi).$$

Wir differenzieren nun \tilde{u} , \tilde{v} nach der Kettenregel nach r bzw. ϕ und erhalten $(D_1 = D_r, D_2 = D_\phi)$

$$D_r \tilde{u}(r,\phi) = \cos \phi D_x u(r\cos \phi, r\sin \phi) + \sin \phi D_y u(r\cos \phi, r\sin \phi)$$

$$D_\phi \tilde{v}(r,\phi) = -r\sin \phi D_x v(r\cos \phi, r\sin \phi) + r\cos \phi D_y v(r\cos \phi, r\sin \phi)$$

(u, v) genügen den Cauchy-Riemannschen Differentialgleichungen, also gilt $D_x u(x, y) = D_y v(x, y)$ sowie $D_y u(x, y) = -D_x v(x, y)$. Aus der obigen Rechnung folgt also

$$rD_r \tilde{u}(r,\phi) = r\cos\phi D_x u(r\cos\phi, r\sin\phi) + r\sin\phi D_y u(r\cos\phi, r\sin\phi)$$

= $r\cos\phi D_y v(r\cos\phi, r\sin\phi) - r\sin\phi D_x v(r\cos\phi, r\sin\phi)$
= $D_\phi \tilde{v}(r,\phi),$

also die erste der zu beweisenden Gleichungen. Analog berechnen wir

$$D_{\phi}\tilde{u}(r,\phi) = -r\sin\phi D_{x}u(r\cos\phi, r\sin\phi) + r\cos\phi D_{y}u(r\cos\phi, r\sin\phi)$$

$$D_{r}\tilde{v}(r,\phi) = \cos\phi D_{x}v(r\cos\phi, r\sin\phi) + \sin\phi D_{y}v(r\cos\phi, r\sin\phi)$$

woraus sich

$$D_{\phi}\tilde{u}(r,\phi) = -r\sin\phi D_{x}u(r\cos\phi, r\sin\phi) + r\cos\phi D_{y}u(r\cos\phi, r\sin\phi)$$
$$= -r\sin\phi D_{y}v(r\cos\phi, r\sin\phi) - r\cos\phi D_{x}v(r\cos\phi, r\sin\phi)$$
$$= -rD_{r}\tilde{v}(r,\phi)$$

ergibt. Ingsgesamt gelten also für $(r, \phi) \in (0, \infty) \times \mathbb{R}$ die Cauchy-Riemann-Differentialgleichungen in Polarkoordinaten:

$$rD_r\tilde{u}(r,\phi) = D_\phi\tilde{v}(r,\phi)$$

 $D_\phi\tilde{u}(r,\phi) = -rD_r\tilde{v}(r,\phi)$

Aufgabe 51

a) Die Funktionen $u(x,y) := \sin x \sin y$ und $v(x,y) := -\cos x \cos y$ sind offensichtlich auf \mathbb{R}^2 stetig differenzierbar. Es gilt

$$D_1 u(x, y) = \cos x \sin y, \qquad D_2 u(x, y) = \sin x \cos y,$$

$$D_1 v(x, y) = \sin x \cos y, \qquad D_2 v(x, y) = \cos x \sin y.$$

Wir prüfen die Cauchy-Riemannschen Differentialgleichungen (CRD) nach: $D_1u = D_2v$ ist immer erfüllt. $D_2u(x,y) = -D_1v(x,y)$ gilt genau dann, wenn $\sin x \cos y = 0$ ist, also wenn $x = k\pi$ mit einem $k \in \mathbb{Z}$ oder $y = (m + \frac{1}{2})\pi$ mit einem $m \in \mathbb{Z}$. Genau in diesen Punkten ist f komplex differenzierbar. Da die Menge

$$M:=\left\{z\in\mathbb{C}\mid \operatorname{Re} z=k\pi \text{ für ein }k\in\mathbb{Z} \text{ oder }\operatorname{Im} z=(m+\frac{1}{2})\pi \text{ für ein }m\in\mathbb{Z}\right\}$$

nicht offen ist, liegt nirgends Holomorphie vor. Für $z=x+iy\in M$ mit $x,y\in \mathbb{R}$ ergibt sich

$$f'(z) = D_1 u(x, y) + i D_1 v(x, y) = \cos x \sin y + i \underbrace{\sin x \cos y}_{=0, \operatorname{da} z \in M} = \cos x \sin y.$$

b) Für $x, y \in \mathbb{R}$ gilt $f(x+iy) = (x+iy)x = x^2 + ixy =: u(x,y) + iv(x,y)$. Die Funktionen $u, v : \mathbb{R}^2 \to \mathbb{R}$ sind stetig differenzierbar mit

$$D_1u(x,y) = 2x$$
, $D_2u(x,y) = 0$, $D_1v(x,y) = y$, $D_2v(x,y) = x$.

Wegen

$$D_1 u(x,y) = D_2 v(x,y) \iff 2x = x \iff x = 0,$$

 $D_2 u(x,y) = -D_1 v(x,y) \iff 0 = -y \iff y = 0$

sind die CRD nur für (x,y)=(0,0) erfüllt. Deshalb liegt nur in z=0 komplexe Differenzierbarkeit vor. Da $\{0\}\subset\mathbb{C}$ nicht offen ist, ist f nirgendwo holomorph.

c) Hier ist $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$. Für $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ gilt

$$f(x+iy) = \frac{x+iy}{x-iy} + \frac{x-iy}{x+iy} = \frac{(x+iy)^2}{x^2+y^2} + \frac{(x-iy)^2}{x^2+y^2} = \frac{2x^2-2y^2}{x^2+y^2}.$$

Wir definieren $u: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$, $u(x,y) = \frac{2x^2-2y^2}{x^2+y^2}$, sowie $v: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$, v(x,y) = 0. Dann erhalten wir für $(x,y) \neq (0,0)$

$$f(x + iy) = u(x, y) + iv(x, y) = u(x, y)$$
.

Offenbar sind u und v auf $\mathbb{R}^2 \setminus \{(0,0)\}$ stetig differenzierbar; die Quotientenregel liefert

$$D_1 u(x,y) = \frac{4x(x^2 + y^2) - (2x^2 - 2y^2)2x}{(x^2 + y^2)^2} = \frac{8xy^2}{(x^2 + y^2)^2}$$

und genauso

$$D_2 u(x,y) = \frac{-8x^2y}{(x^2 + y^2)^2} \,,$$

außerdem gilt

$$D_1v(x,y) = D_2v(x,y) = 0$$
.

Damit sind die CRD genau dann erfüllt, wenn

$$\frac{8xy^2}{(x^2+y^2)^2} = 0 \quad \text{und} \quad \frac{-8x^2y}{(x^2+y^2)^2} = 0,$$

also wenn x=0 oder y=0 gilt. Die Funktion f ist somit nur auf der imaginären und der reellen Achse komplex differenzierbar (natürlich mit Ausnahme des Nullpunktes, wo sie gar nicht definiert ist). Hier lautet die Ableitung

$$f'(x+iy) = D_1 u(x,y) + i D_1 v(x,y) = 0.$$

Da $\{z \in \mathbb{C} \setminus \{0\} \mid \text{Re } z = 0 \text{ oder Im } z = 0\}$ nicht offen ist, liegt Holomorphie nirgends vor.

Aufgabe 52

Da \mathbb{C} einfach zusammenhängend ist, gilt (vgl. Sätze 2 und 3 in 1.4 3)): u ist genau dann Realteil einer holomorphen Funktion, wenn u harmonisch ist, wenn also $\Delta u = 0$ gilt. Wegen

$$\Delta u(x,y) = (D_1^2 u)(x,y) + (D_2^2 u)(x,y)$$

= $12x^2 + 2\lambda y^2 + 12y^2 + 2\lambda x^2 = (12 + 2\lambda)(x^2 + y^2)$

ist dies genau für $\lambda = -6$ der Fall.

Wir betrachten im folgenden daher $u(x,y) = x^4 + y^4 - 6x^2y^2$. Nun benötigen wir alle Funktionen v mit $D_1v = -D_2u$ und $D_2v = D_1u$, d. h. die Funktionen v, die konjugiert harmonisch zu u sind. Die erste Forderung an v lautet

$$D_1v(x,y) = -D_2u(x,y) = -(4y^3 - 12x^2y) = -4y^3 + 12x^2y.$$

Hieraus folgt durch Integration bezüglich x: Es gilt $v(x,y) = -4xy^3 + 4x^3y + c(y)$ mit einer gewissen Funktion $c: \mathbb{R} \to \mathbb{R}$. Damit ergibt sich

$$D_2v(x,y) = -12xy^2 + 4x^3 + c'(y),$$

und dies soll = $D_1u(x,y) = 4x^3 - 12xy^2$ sein. Dazu muss c'(y) = 0 gelten, also c konstant sein. Damit haben wir die holomorphe Funktion f gefunden

$$f(x+iy) = u(x,y) + iv(x,y) = x^4 + y^4 - 6x^2y^2 + i(-4xy^3 + 4x^3y + c)$$

= $x^4 + 4ix^3y - 6x^2y^2 - 4ixy^3 + y^4 + ic = (x+iy)^4 + ic$ $(c \in \mathbb{R})$.

Wir erhalten also: Genau die Funktionen der Form $f(z) = z^4 + ic$, wobei $c \in \mathbb{R}$ beliebig, haben $u(x,y) = x^4 + y^4 - 6x^2y^2$ als Realteil.

Aufgabe 53

a) Auf $\mathbb{C}\setminus(-\infty,0] := \mathbb{C}\setminus\{z\in\mathbb{C}\mid \text{Im }z=0 \text{ und } \text{Re }z\in(-\infty,0]\} = \mathbb{C}\setminus\{z\in\mathbb{C}\mid z=x\in\mathbb{R} \text{ und }x\in(-\infty,0]\}$ sind die verschiedenen Zweige des Logarithmus gegeben durch

$$f_k(z) := \ln|z| + i(\arg(z) + 2k\pi)$$
, wobei $\arg(z) \in (-\pi, \pi)$ und $k \in \mathbb{Z}$.

Nach Satz 3 in 2.3 ist $f_k \colon \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$ schlicht. Wegen $G \subset \mathbb{C} \setminus (-\infty, 0]$ ist jede dieser Funktionen auch in G schlicht.

Bemerkung: Man hätte statt $\mathbb{C} \setminus (-\infty, 0]$ auch ein anderes Holomorphiegebiet wählen können; der Schlitz muss nur außerhalb von G verlaufen.

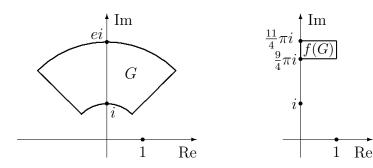
b) Für die oben definierten f_k gilt

$$f_k(i) = \ln|i| + i \arg(i) + 2k\pi i = 0 + i\frac{\pi}{2} + 2k\pi i = (2k + \frac{1}{2})\pi i$$
.

Somit ist die Forderung $\log(i) = \frac{5}{2}\pi i$ genau für k = 1 erfüllt; also ist $f_1 : \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$ der gesuchte Zweig des Logarithmus.

Setze $f:=f_1$. Für $z\in G$ durchläuft |z| das Intervall (1,e), also Re $f(z)=\ln|z|$ das Intervall (0,1). Da $\arg(z)$ das Intervall $(\frac{1}{4}\pi,\frac{3}{4}\pi)$ überstreicht, muss Im $f(z)=\arg(z)+2\pi$ das Intervall $(\frac{9}{4}\pi,\frac{11}{4}\pi)$ durchlaufen. Insgesamt bedeutet dies

$$f(G) = \{ z \in \mathbb{C} \mid \text{Re } z \in (0,1), \text{ Im}(z) \in (\frac{9}{4}\pi, \frac{11}{4}\pi) \}.$$



c) Für $h(z) := e^z$ gilt G = h(f(G)). Da h in f(G) schlicht ist, ergibt sich

$$I(G) = I(h(f(G))) = \iint_{f(G)} |h'(x+iy)|^2 d(x,y) = \int_{x=0}^1 \int_{y=9\pi/4}^{11\pi/4} e^{2x} dy dx$$
$$= \frac{\pi}{2} \int_0^1 e^{2x} dx = \frac{\pi}{2} \cdot \frac{e^{2x}}{2} \Big|_{x=0}^1 = \frac{\pi(e^2 - 1)}{4}.$$

Aufgabe 54

a) Definitionsgemäß gilt für die Hauptzweige von Potenzfunktion und Logarithmus

$$z^{\alpha} = e^{\alpha \log z}$$
, $\log z = \ln|z| + i \arg z$, wobei $\arg z \in (-\pi, \pi)$, $\alpha \in \mathbb{C}$.

• Mit $Log(1+i) = \ln|1+i| + i \arg(1+i) = \ln \sqrt{2} + i\pi/4$ ergibt sich

$$(1+i)^{i} = e^{i \log(1+i)} = e^{i(\ln\sqrt{2}+i\pi/4)} = e^{i \ln\sqrt{2}-\pi/4} = e^{-\pi/4} \left(\cos(\ln\sqrt{2}) + i\sin(\ln\sqrt{2})\right).$$

Man liest ab: $\operatorname{Re}((1+i)^i) = e^{-\pi/4} \cos(\frac{1}{2}\ln 2)$ und $\operatorname{Im}((1+i)^i) = e^{-\pi/4} \sin(\frac{1}{2}\ln 2)$.

 \bullet Wegen Log $i=\ln |i|+i \arg i=i\pi/2$ gilt $i^i=e^{i(i\pi/2)}=e^{-\pi/2},$ also

$$i^{(i^i)} = i^{(e^{-\pi/2})} = \exp(e^{-\pi/2} \operatorname{Log} i) = \exp(\frac{\pi}{2} e^{-\pi/2} i) = \cos(\frac{\pi}{2} e^{-\pi/2}) + i \sin(\frac{\pi}{2} e^{-\pi/2}).$$

Man sieht: $Re(i^{(i^i)}) = cos(\frac{\pi}{2}e^{-\pi/2})$ und $Im(i^{(i^i)}) = sin(\frac{\pi}{2}e^{-\pi/2})$.

• Wegen Log $i = i\pi/2$ ergibt sich

$$Log(Log i) = Log(i\pi/2) = \ln|i\pi/2| + i\arg(i\pi/2) = \ln(\pi/2) + i\pi/2$$
.

Damit erhalten wir

$$(\text{Log } i)^i = e^{i \text{Log}(\text{Log } i)} = e^{i \ln(\pi/2) - \pi/2} = e^{-\pi/2} \cos(\ln(\pi/2)) + i e^{-\pi/2} \sin(\ln(\pi/2)),$$

und Real- und Imaginärteil können unmittelbar abgelesen werden.

b) Die Gleichung $e^{1/z} = i = e^{i\frac{\pi}{2}}$ ist genau dann erfüllt, wenn

$$\frac{1}{z} = i\frac{\pi}{2} + 2k\pi i = i\frac{(1+4k)\pi}{2}$$
 \iff $z = -i\frac{2}{(1+4k)\pi}$

mit einem gewissen $k \in \mathbb{Z}$ gilt, d.h. $\{z \in \mathbb{C} \mid e^{1/z} = i\} = \{\frac{-2i}{(1+4k)\pi} \mid k \in \mathbb{Z}\}.$

Aufgabe 55

a) Für $x, y \in \mathbb{R}$ gilt

$$\sin(x+iy) = \frac{e^{i(x+iy)} - e^{-i(x+iy)}}{2i} = \frac{(\cos x + i\sin x)e^{-y} - (\cos x - i\sin x)e^{y}}{2i}$$
$$= -i\frac{\cos x (e^{-y} - e^{y}) + i\sin x (e^{-y} + e^{y})}{2} = \sin x \cosh y + i\cos x \sinh y.$$

• Parallelen zur reellen Achse mit der Parametrisierung z(x) = x + iy ($x \in \mathbb{R}$ beliebig, $y \in \mathbb{R}$ fest) werden auf $w(x) = \sin(x + iy)$ abgebildet.

Im Falle y = 0 ergibt sich $w(x) = \sin x$ wegen $\cosh 0 = 1$ und $\sinh 0 = 0$. Die reelle Achse wird somit auf das Intervall [-1,1] abgebildet.

Für $y \neq 0$ erhält man eine Ellipse (um 0) mit den Halbachsen cosh y und $|\sinh y|$.

• Betrachtet man das Bild einer Parallelen zur imaginären Achse, so erhält man die Parametrisierung $w(y) = \sin(x + iy), y \in \mathbb{R}$ beliebig, $x \in \mathbb{R}$ fest.

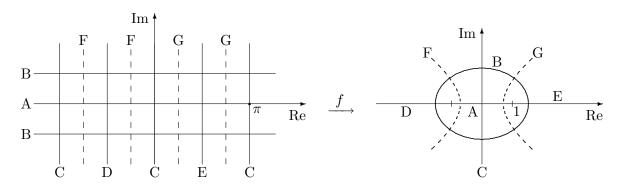
Für $x = k\pi$ mit einem $k \in \mathbb{Z}$ gilt $w(y) = i(-1)^k \sinh y$, also ergibt sich als Bild die imaginäre Achse.

Für $x = \frac{\pi}{2} + k\pi$ mit einem $k \in \mathbb{Z}$ ist $w(y) = (-1)^k \cosh y$, also bekommt man als Bild eine der beiden Halbgeraden $(-\infty, -1]$ und $[1, \infty)$.

In allen anderen Fällen ergeben sich Hyperbeläste, denn dann gilt

$$\left(\frac{\operatorname{Re} w(y)}{\sin x}\right)^2 - \left(\frac{\operatorname{Im} w(y)}{\cos x}\right)^2 = \cosh^2 y - \sinh^2 y = 1.$$

Sämtliche Fälle sind in der folgenden Skizze aufgeführt:



b) Wegen $f'(z) = \cos z = \frac{1}{2}(e^{iz} + e^{-iz})$ gilt f'(z) = 0 genau dann, wenn $e^{iz} = -e^{-iz}$, also wenn $e^{2iz} = -1 = e^{i\pi}$. Dies bedeutet $2z = \pi + 2k\pi$ mit einem $k \in \mathbb{Z}$. Also ist $f'(z_0) \neq 0$ genau für $z_0 \in \mathbb{C} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$ erfüllt.

Nun sei $z_0 = x_0 + iy_0$ ein Punkt, in dem $f'(z_0) \neq 0$ gilt. Mit g bezeichnen wir die Parallele zur reellen Achse, die durch z_0 geht, und mit h die Parallele zur imaginären Achse durch z_0 . Die Geraden g und h schneiden sich in z_0 im rechten Winkel. Wir wollen bestätigen, dass sich auch die Bilder dieser Geraden im Punkt $f(z_0)$ im rechten Winkel schneiden.

Betrachten wir zunächst die Sonderfälle:

Ist $y_0 = 0$, so ist $g = \mathbb{R}$ und f(g) = [-1, 1]. Für $x_0 = k\pi$ ist f(h) die imaginäre Achse und diese steht senkrecht auf [-1, 1]. Der Fall $x_0 = \frac{\pi}{2} + k\pi$ tritt wegen $f'(z_0) = 0$ nicht auf. Für beliebiges $x_0 \neq k\frac{\pi}{2}$ ist f(h) ein Hyperbelast; er steht senkrecht auf [-1, 1].

Ist $y_0 \neq 0$, so wird g auf eine Ellipse abgebildet. Für $x_0 = k\pi$ ist f(h) die imaginäre Achse; sie steht senkrecht auf der Ellipse. Für $x_0 = \frac{\pi}{2} + k\pi$ ist $f(h) = (-\infty, -1]$ oder $f(h) = [1, \infty)$; in beiden Fällen schneidet f(h) die Ellipse senkrecht.

Nun der allgemeine Fall: $y_0 \neq 0$ und $x_0 \neq k\frac{\pi}{2}$. Dann ist f(g) eine Ellipse und f(h) ein Hyperbelast. Identifizieren wir \mathbb{C} mit \mathbb{R}^2 , so haben sie die Parametrisierungen

$$\vec{r}_{f(q)}(t) = (\cosh y_0 \sin t, \sinh y_0 \cos t)$$
 und $\vec{r}_{f(h)}(t) = (\sin x_0 \cosh t, \cos x_0 \sinh t)$.

Als Tangentenvektoren erhält man

$$\vec{r}_{f(g)}'(t) = (\cosh y_0 \cos t, -\sinh y_0 \sin t)$$
 und $\vec{r}_{f(h)}'(t) = (\sin x_0 \sinh t, \cos x_0 \cosh t)$.

Es folgt $\vec{r}_{f(g)}'(x_0) \cdot \vec{r}_{f(h)}'(y_0) = \sin x_0 \cos x_0 \sinh y_0 \cosh y_0 - \sin x_0 \cos x_0 \sinh y_0 \cosh y_0 = 0$. Also schneiden sich f(g) und f(h) in $f(z_0)$ auch in diesem Fall im rechten Winkel.

Bemerkung: Sei $G \subset \mathbb{C}$ ein Gebiet und $z_0 \in G$. Eine holomorphe Funktion $f: G \to \mathbb{C}$ heißt in z_0 konform, falls $f'(z_0) \neq 0$ gilt. Ist f in z_0 konform, so ist f in z_0 winkeltreu, d.h. für alle Kurven $z_1(t), z_2(t)$ mit $z_1(0) = z_2(0) = z_0$, die in z_0 Tangenten besitzen, besitzen auch die Bildkurven $w_1(t) := f(z_1(t))$ und $w_2(t) := f(z_2(t))$ in $f(z_0)$ Tangenten und die Winkel zwischen beiden Tangentenpaaren stimmen nach Größe und Drehsinn überein.

Somit haben wir in dieser Teilaufgabe sämtliche Punkte, in denen f konform ist, bestimmt und die Winkeltreue von f für die Kurven aus \mathbf{a}) bestätigt.

Aufgabe 56

Die Aussage dieser Aufgabe heißt in der Literatur Satz von Liouville. Da die holomorphe Funktion f auf der ganzen komplexen Ebene definiert ist, gilt

$$f'(z_0) = \frac{1}{2\pi i} \oint_{|\xi - z_0| = R} \frac{f(\xi)}{(\xi - z_0)^2} d\xi \quad (*)$$

für jedes $z_0 \in \mathbb{C}$ und R > 0 (siehe Vorlesung).

Indem wir im Kurvenintegral (*) den Kreis durch $\xi = z_0 + Re^{i\phi}$ (d.h. $d\xi = iRe^{i\phi}d\phi$ in der üblichen formalen Schreibweise) parametrisieren, können wir folgendermaßen abschätzen:

$$|2\pi i f'(z_0)| = \left| \int_0^{2\pi} \frac{f(z_0 + Re^{i\phi})}{|Re^{i\phi}|^2} iRe^{i\phi} d\phi \right|$$

$$\leqslant \int_0^{2\pi} \left| \frac{f(z_0 + Re^{i\phi})R}{|Re^{i\phi}|^2} \right| d\phi$$

$$\leqslant \int_0^{2\pi} \frac{|f(z_0 + Re^{i\phi})|}{R} d\phi$$

$$\leqslant \frac{M}{R} \int_0^{2\pi} d\phi = \frac{2\pi M}{R}$$

wobei wir $|f| \leq M$ und an mehreren Stellen $|e^{i\phi}| = 1$ ausgenutzt haben. Also erhalten wir

$$|f'(z_0)| \leqslant \frac{M}{R}$$

für jedes R>0. Der Grenzwert $R\to\infty$ liefert: $f'(z_0)=0$, und da $z_0\in\mathbb{C}$ beliebig war, hat f' konstant den Wert 0. Als nächstes bemerken wir, dass

$$f(z) - f(0) = \int_{\gamma} f'(\xi) \ d\xi$$

für jedes $z \in C$ gilt, wobei γ eine Kurve ist, die z und 0 miteinander verbindet. Da $f'(\xi) \equiv 0$ folgt, dass f(z) = f(0) und somit ist f konstant.