Dr. Andreas Müller-Rettkowski

Dr. Vu Hoang

Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik inklusive Komplexe Analysis und Integraltransformationen

14. Übungsblatt

Aufgabe 64

Bestimmen Sie mittels Laplacetransformation eine Lösung des folgenden Anfangswertproblems für ein System von Differentialgleichungen:

$$\begin{cases} y_1'(t) + y_2(t) &= 0 \\ y_2'(t) + y_1(t) &= 0 \end{cases} \quad y_1(0) = 1, \quad y_2(0) = 0.$$

Aufgabe 65

Ermitteln Sie eine Funktion $y:[0,\infty)\to\mathbb{C}$, die der Gleichung

$$y(t) = t^3 + \int_0^t y(\tau) \sin(t - \tau) d\tau$$

für alle $t \ge 0$ genügt.

Aufgabe 66

a) Berechnen Sie die Partialbruchzerlegung von

i)
$$\frac{x^2+x-1}{x^3-x^2-2x}$$
;

ii)
$$\frac{x}{x^3+x^2-x-1}$$
;

iii)
$$\frac{x}{8-x^3}$$
.

b) Bestimmen Sie einen Ansatz für die Partialbruchzerlegung von

i)
$$\frac{1}{(x+1)^2(x^3+1)}$$
;

ii)
$$\frac{1}{x^6 - x^2}$$
.

Aufgabe 67

Ermitteln Sie jeweils eine Funktion $f \colon [0, \infty) \to \mathbb{R}$ mit

a)
$$\mathscr{L}(f)(s) = \frac{1}{s^2 - 1};$$

b)
$$\mathscr{L}(f)(s) = \frac{1}{s^2 + 2s};$$

c)
$$\mathscr{L}(f)(s) = \frac{s+3}{s^3+4s^2};$$

d)
$$\mathscr{L}(f)(s) = \frac{s+a}{s(s^2+a^2)}$$
 $(a>0)$.

Aufgabe 68

Sei $a \in \mathbb{R}$. Bestimmen Sie jeweils eine Funktion $f \in \mathfrak{Z}$ mit

a)
$$f(t) \circ - \ln(\frac{s+a}{s-a})$$
 für $s \in \mathbb{R}$ mit $s > |a|$;

b)
$$f(t) \circ - \bullet \arctan(\frac{a}{s})$$
 für $s \in (0, \infty)$;

c)
$$f(t) \circ - \bullet \ln(1 - \frac{a^2}{s^2})$$
 für $s \in \mathbb{R}$ mit $s > |a|$.

Aufgabe 69

Bestimmen Sie jeweils eine Lösung der folgenden Differentialgleichungen.

a)
$$y''(t) + 4y'(t) + 3y(t) = 12$$
, $y(3) = 7$, $y'(3) = 1$

b)
$$y'''(t) - 3y''(t) + 3y'(t) - y(t) = e^t$$
, $y(0) = y'(0) = 0$, $y''(0) = 1$

c)
$$y''(t) + 2y'(t) + y(t) = 6te^{-t}$$
, $y(0) = 6$, $y(1) = 13/e$

Aufgabe 70

Bestimmen Sie eine Funktion $y: [0, \infty) \to \mathbb{R}$ mit

$$y''(t) - 4y'(t) + 4y(t) = 3\delta(t-1) + \delta(t-2),$$
 $y(0) = 1,$ $y'(0) = 1.$

Was ist 2 + 2?

Grundschüler: 4.

Mathematiker: Das Problem ist eindeutig lösbar. Ingenieur (zückt den Taschenrechner): 3,999999.....

Politiker: Mit Stolz darf ich verkünden, noch nie Mathematik verstanden zu haben.

Die **Prüfungen** zu HM II und KAI finden am Montag, den 19.09.2011, statt. Zur Teilnahme ist eine Anmeldung erforderlich.

!!! Anmeldeschluss: Freitag, der 19.07.2013. !!!

Weitere Informationen zu den Prüfungen entnehmen Sie bitte der Vorlesungshomepage www.math.kit.edu/iana1/lehre/hm2etec2013s/.

**** WIR WÜNSCHEN IHNEN EINE ERHOLSAME VORLESUNGSFREIE ZEIT UND ERFOLGREICHE PRÜFUNGEN ****