Priv.-Doz. Dr. P. C. Kunstmann

Dr. S. Wugalter

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik inklusive Komplexe Analysis und Integraltransformationen

5. Übungsblatt

Aufgabe 1

Für $n \in \mathbb{N}_0$ sei $f_n : [0, \infty) \to \mathbb{R}$ definiert durch $f_n(t) = t^n$.

- a) Begründen Sie, dass die Laplacetransformierte $\mathcal{L}\{f_n\}(s)$ für alle $s \in \mathbb{C}$ mit Re s > 0 existiert.
- b) Zeigen Sie, dass

$$\mathcal{L}{f_n}(s) = \frac{n!}{s^{n+1}}$$

für alle $s \in \mathbb{C}$ mit $\operatorname{Re} s > 0$ gilt.

Aufgabe 2

Sei a > 0 und $f: [0, \infty) \to \mathbb{C}$ eine stückweise stetige Funktion von exponentieller Ordnung γ . Zeigen Sie, dass die Funktion $t \mapsto f(at)$ von exponentieller Ordnung γa ist und dass gilt

$$\mathscr{L}{f(at)}(s) = \frac{1}{a}\mathscr{L}{f}\left(\frac{s}{a}\right)$$
 für alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > \gamma a$.

Aufgabe 3

Berechnen Sie jeweils die Laplacetransformierte $\mathcal{L}\{f\}$ der Funktion $f:[0,\infty)\to\mathbb{R}$.

a)
$$f(t) = e^{at}(t^2 + bt + c)$$
 $(a, b, c \in \mathbb{R})$ b) $f(t) = \cos(\omega t)$ $(\omega \in \mathbb{R})$

c)
$$f(t) = \sinh(\omega t)$$
 $(\omega \in \mathbb{R})$ d) $f(t) = \sinh^2(\omega t)$ $(\omega \in \mathbb{R})$

Aufgabe 4

Bestimmen Sie jeweils eine Funktion $f:[0,\infty)\to\mathbb{C}$ mit

a)
$$\mathscr{L}{f}(s) = \frac{1}{s-a} \quad (a \in \mathbb{C});$$
 b) $\mathscr{L}{f}(s) = \frac{e^{-3s}}{s+2};$

c)
$$\mathscr{L}{f}(s) = \frac{s+3}{(s+1)^2+4}$$
.

Aufgabe 5

Ermitteln Sie eine Funktion $y:[0,\infty)\to\mathbb{C}$, die der Gleichung

$$y(t) = t^3 + \int_0^t y(\tau) \sin(t - \tau) d\tau$$

für alle $t \ge 0$ genügt.

Aufgabe 6

a) Bestimmen Sie alle Funktionen y, die

$$y'(x) = y(x) \cdot \sin x$$
 für alle $x \in [-\pi/2, \pi/2]$

erfüllen.

b) Geben Sie alle auf [-1, 1] stetigen Funktionen y an mit

$$y(x) = \int_0^x y(t) dt$$
 für alle $x \in [-1, 1]$.

Aufgabe 7

Bestimmen Sie die allgemeine Lösung der Differentialgleichung auf dem angegebenen Intervall bzw. die Lösungen der Anfangswertprobleme.

a)
$$x^3y' + (2-3x^2)y = x^3$$
, $x \in (0, \infty)$ b) $y' + y \cos x = \sin x \cos x$, $y(0) = 1$

c)
$$y''' + 3y'' + \frac{9}{4}y' = 0$$
, $y(0) = y'(0) = 0$, $y''(0) = 1$

Aufgabe 8

Gegeben sei das System linearer Differentialgleichungen

$$u' = 8u - 6v,$$

$$v' = 9u - 7v.$$

Stellen Sie dieses mit Hilfe einer geeigneten Matrix $A \in \mathbb{R}^{2\times 2}$ in der Form

$$\begin{pmatrix} u' \\ v' \end{pmatrix} = A \begin{pmatrix} u \\ v \end{pmatrix} \tag{1}$$

dar. Begründen Sie, dass A ähnlich zu einer Diagonalmatrix D ist, und definieren Sie Funktionen \widetilde{u} und \widetilde{v} so, dass (1) äquivalent zu

$$\begin{pmatrix} \widetilde{u}' \\ \widetilde{v}' \end{pmatrix} = D \begin{pmatrix} \widetilde{u} \\ \widetilde{v} \end{pmatrix}$$

ist. Da D Diagonalgestalt besitzt, erhält man zwei entkoppelte Gleichungen, aus denen sich \widetilde{u} und \widetilde{v} berechnen lassen. Bestimmen Sie damit die Lösungen des Systems (1).