Höhere Mathematik II

für die Fachrichtungen Elektrotechnik und Informationstechnik

9. Übungsblatt

Aufgaben 1-3 werden in der Übung besprochen, Aufgaben 4-6 im Tutorium.

Aufgabe 1: Das Vektorfeld $\vec{g}: \mathbb{R}^3 \setminus \{\vec{0}\} \to \mathbb{R}^3$ ist gegeben durch

$$\vec{g}(x,y,z) = \frac{x^2 + y^2 + z^2 - 2}{(x^2 + y^2 + z^2)^2} (x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3).$$

Bestimmen Sie die Rotation und die Divergenz von \vec{g} .

Aufgabe 2: a) Die Kurve $\gamma: [0, 2\pi] \to \mathbb{R}^3$ ist gegeben durch $\gamma(t) = (t \cos t, t \sin t, t)$. Berechnen Sie

$$\int_{\gamma} f \, ds \qquad \text{für} \quad f(x, y, z) := 2z - \sqrt{x^2 + y^2} \, .$$

b) Berechnen Sie das Kurvenintegral $\int_{\gamma} \vec{v} \cdot d\vec{s}$ für

$$\vec{v}(x,y) = (e^x, xy), \qquad \gamma(t) = (\cos t, \sin t), \quad 0 \le t \le 2\pi$$

Aufgabe 3: Ein Massenpunkt bewege sich unter der Wirkung des Kraftfeldes \vec{f} : $\mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (2xy, x^2 + y^2)$ auf dem durch die Punkte (0,0), (2,0), (2,1), (0,1) und (-1,2) (in dieser Reihenfolge) gebildeten Polygonzug γ . Welche Arbeit $\int_{\gamma} \vec{f} \cdot d\vec{s}$ wird hierbei geleistet?

Aufgabe 4: Berechnen Sie Rotation und Divergenz der folgenden Vektorfelder:

$$\vec{v_1}(x,y,z) = \begin{pmatrix} 3xyz + 2xz \\ xy^2 - e^z \\ z - 2z^2 \end{pmatrix}, \quad \vec{v_2}(x,y,z) = \begin{pmatrix} xy \\ e^x \\ 0 \end{pmatrix}.$$

Aufgabe 5: Berechnen Sie jeweils das Kurvenintegral $\int_{\gamma} \vec{v} \cdot d\vec{s}$.

a)
$$\vec{v}(x, y, z) = (y, -z, x)$$
, $\gamma(t) = (\sinh t, \cosh t, \sinh t)$, $0 \le t \le \ln 2$

b)
$$\vec{v}(x,y) = (\sin x, x^2 + y^2), \qquad \gamma(t) = \begin{cases} (t,0), & 0 \le t \le 1\\ (1,t-1), & 1 < t \le 2 \end{cases}$$

Aufgabe 6: Ein C^2 -Skalarfeld $f: \mathbb{R}^n \setminus \{\vec{0}\} \to \mathbb{R}$ heißt radialsymmetrisch, falls $f(\vec{x})$ nur von $\|\vec{x}\|$ abhängt, d.h. falls $f(\vec{x}) = f(\vec{y})$ für alle $\vec{x}, \vec{y} \in \mathbb{R}^n \setminus \{\vec{0}\}$ mit $\|\vec{x}\| = \|\vec{y}\|$ gilt.

In diesem Falle gibt es eine zweimal stetig differenzierbare Funktion $F:(0,\infty)\to\mathbb{R}$ mit $f(\vec{x})=F(\|\vec{x}\|)$ für alle $\vec{x}\in\mathbb{R}^n\setminus\{\vec{0}\}$. Zeigen Sie für jedes $\vec{x}\in\mathbb{R}^n\setminus\{\vec{0}\}$

$$\Delta f(\vec{x}) = F''(\|\vec{x}\|) + \frac{n-1}{\|\vec{x}\|} F'(\|\vec{x}\|).$$

Vergleichen Sie das Ergebnis mit der Formel aus Aufgabe 4 b) auf Übungsblatt 6.