Prof. Dr. Wolfgang Reichel Dr. Semjon Wugalter

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik

1. Übungsblatt

Aufgabe 1

a) Gegeben sind die Matrizen

$$A = \begin{pmatrix} 2 & 3i & -1 \\ 0 & 1 & 1-i \\ 2+i & 4 & -3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & -i & 3 \\ 1 & -1 & 2 \\ 0 & 3 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} i & 0 \\ 1 & -i \\ 2 & 2 \end{pmatrix}.$$

Entscheiden Sie, welche der folgenden Ausdrücke definiert sind, und berechnen Sie diese gegebenenfalls:

$$A+B$$
, $A+C$, BA , CB , $(A+B)C$.

b) Sei
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
. Bestimmen Sie alle Matrizen $L \in \mathbb{R}^{2 \times 2}$ mit $LA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Aufgabe 2

Im $\mathbb{R}^{4\times4}$ bzw. $\mathbb{R}^{3\times3}$ sind die folgenden Matrizen gegeben:

$$A = \begin{pmatrix} 0 & 3 & -1 & 1 \\ 1 & -3 & 1 & -1 \\ -5 & 1 & 0 & 0 \\ 0 & 6 & -2 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} -1 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 \end{pmatrix}.$$

a) Bestimmen Sie B^{-1} , $(AB)^{-1}$, $(A^T)^{-1}$.

b) Lösen Sie die linearen Gleichungssysteme
$$Ax = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
 und $(AB)x = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$.

Aufgabe 3

a) Wenden Sie das Gram-Schmidt-Verfahren auf die folgenden Vektoren aus \mathbb{C}^3 an:

$$x_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad x_2 = \begin{pmatrix} 2 \\ 2i \\ 0 \end{pmatrix}, \qquad x_3 = \begin{pmatrix} 5 \\ 3i \\ 1 \end{pmatrix}.$$

b) Seien
$$y_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$
, $y_2 = \begin{pmatrix} 5 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $y_3 = \begin{pmatrix} -3 \\ -3 \\ 1 \\ -3 \end{pmatrix}$.

Geben Sie eine Orthonormalbasis von $lin\{y_1, y_2, y_3\}$ an.

Aufgabe 4

a) Gegeben seien

$$\begin{pmatrix} i/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1/2 \\ -i/2 \\ (1-i)/2 \end{pmatrix}.$$

Ergänzen Sie einen dritten Vektor so, dass die Vektoren die Spalten einer unitären Matrix bilden.

- b) Sei $A \in \mathbb{C}^{n \times n}$ eine unitäre Matrix.
 - i) Rechnen Sie nach, dass $\langle Az, Az \rangle = \langle z, z \rangle$ für alle $z \in \mathbb{C}^n$ gilt.
 - ii) Sei $\lambda \in \mathbb{C}$ so, dass es einen Vektor $z \in \mathbb{C}^n \setminus \{0\}$ gibt mit $Az = \lambda z$. Zeigen Sie, dass dann $|\lambda| = 1$ gilt.

Hinweis: Verwenden Sie die Definition einer unitären Matrix.