Institut für Analysis

Prof. Dr. Wolfgang Reichel

Dr. Semjon Wugalter

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt

Aufgabe 1

a) Die Summe A+C ist nicht definiert, weil die Spaltenanzahl von A und C nicht übereinstimmt. Auch das Produkt CB ist undefiniert, denn bei Matrizenprodukten muss die Anzahl der Spalten des ersten Faktors gleich der Anzahl der Zeilen des zweiten Faktors sein. Alle anderen Ausdrücke können wir berechnen:

$$A + B = \begin{pmatrix} 3 & 2i & 2 \\ 1 & 0 & 3-i \\ 2+i & 7 & -3 \end{pmatrix}$$

$$BA = \begin{pmatrix} 1 & -i & 3 \\ 1 & -1 & 2 \\ 0 & 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3i & -1 \\ 0 & 1 & 1-i \\ 2+i & 4 & -3 \end{pmatrix} = \begin{pmatrix} 8+3i & 12+2i & -11-i \\ 6+2i & 7+3i & -8+i \\ 0 & 3 & 3-3i \end{pmatrix}$$

$$(A+B)C = \begin{pmatrix} 3 & 2i & 2 \\ 1 & 0 & 3-i \\ 2+i & 7 & -3 \end{pmatrix} \begin{pmatrix} i & 0 \\ 1 & -i \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 4+5i & 6 \\ 6-i & 6-2i \\ 2i & -6-7i \end{pmatrix}$$

Bemerkung: Insbesondere gilt $AB \neq BA$, d.h. Matrizenmultiplikation ist nicht kommutativ.

b) Sei
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$$
. Für $L = \begin{pmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ gilt
$$LA = \begin{pmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & l_{11} + 2l_{12} \\ 0 & l_{21} + 2l_{22} \end{pmatrix}.$$

Also ist LA gleich der Nullmatrix genau dann, wenn $l_{11} + 2l_{12} = 0$ und $l_{21} + 2l_{22} = 0$ gelten. Dies sind zwei (homogene) lineare Gleichungssysteme. Die erweiterte Matrix zu $l_{11} + 2l_{12} = 0$

liegt bereits in Zeilennormalform vor, so dass man direkt mit dem (-1)-Ergänzungstrick die Lösung ablesen kann

$$\begin{pmatrix} l_{11} \\ l_{12} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2s \\ -s \end{pmatrix}, \qquad s \in \mathbb{R} \text{ beliebig.}$$

Analog erhält man für die Lösung von $l_{21} + 2l_{22} = 0$

$$\begin{pmatrix} l_{21} \\ l_{22} \end{pmatrix} = \begin{pmatrix} 2t \\ -t \end{pmatrix}, \qquad t \in \mathbb{R} \text{ beliebig.}$$

Folglich gilt LA = 0 genau für Matrizen der Form

$$L = \begin{pmatrix} 2s & -s \\ 2t & -t \end{pmatrix} = s \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix} + t \begin{pmatrix} 0 & 0 \\ 2 & -1 \end{pmatrix}, \quad s, t \in \mathbb{R} \text{ beliebig.}$$

Aufgabe 2

a) Mit Zeilenumformungen erhalten wir

$$\begin{pmatrix} 0 & 3 & -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & -3 & 1 & -1 & 0 & 1 & 0 & 0 \\ -5 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 6 & -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{Z_3 \to Z_3 + 5Z_2} \begin{pmatrix} 0 & 3 & -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & -3 & 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & -14 & 5 & -5 & 0 & 5 & 1 & 0 \\ 0 & 6 & -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{Z_3 \to Z_3 + 5Z_1} \begin{pmatrix} 0 & 3 & -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 5 & 5 & 1 & 0 \\ 0 & 6 & -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{Z_4 \to Z_4 - 6Z_3} \begin{pmatrix} 0 & 0 & -1 & 1 & -14 & -15 & -3 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 5 & 5 & 1 & 0 \\ 0 & 0 & 6 & -2 & 3 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{Z_1 \to Z_1 \to Z_1 \to Z_1 \to Z_1 \to Z_1 \to Z_2 \to Z_2 + 2Z_1 \to Z_1 \to Z_2 \to Z_2$$

Wir sehen, dass A regulär ist, und haben zugleich $A^{-1} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 5 & 5 & 1 & 0 \\ 12 & 15 & 3 & 1 \\ -2 & 0 & 0 & 1 \end{pmatrix}$ berechnet.

Für die Matrix B ergibt sich

$$\begin{pmatrix} -1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 & 0 & 1 & 0 \\ \end{pmatrix} \xrightarrow{Z_4 \to Z_4 - 3Z_3} \begin{pmatrix} -1 & 0 & 0 & -1 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -3 & 1 \end{pmatrix}$$

$$\xrightarrow{Z_1 \to -Z_1} \begin{pmatrix} 1 & 0 & 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -3 & 1 \end{pmatrix}$$

Also ist B regulär mit $B^{-1} = \begin{pmatrix} -1 & 1 & 3 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -3 & 1 \end{pmatrix}$.

Da A und B regulär sind, gilt:

$$(AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 42 & 49 & 10 & 2 \\ 5 & 5 & 1 & 0 \\ 12 & 15 & 3 & 1 \\ -38 & -45 & -9 & -2 \end{pmatrix}$$

$$(A^{T})^{-1} = (A^{-1})^{T} = \begin{pmatrix} 1 & 5 & 12 & -2 \\ 1 & 5 & 15 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Hier verwendeten wir das folgende Resultat: Ist $D \in \mathbb{K}^{n \times n}$, so ist auch D^T regulär und es gilt $(D^T)^{-1} = (D^{-1})^T$.

In der Tat ergibt sich mit den Rechenreglen für das Transponieren von Matrizen

$$(D^{-1})^T D^T = (DD^{-1})^T = I_n^T = I_n$$
 und $D^T (D^{-1})^T = (D^{-1}D)^T = I_n^T = I_n$.

b) Da A und AB regulär sind, erhalten wir jeweils die eindeutig bestimmten Lösungen

$$x = A^{-1} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -3 \\ -2 \end{pmatrix}$$
 bzw. $x = (AB)^{-1} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -7 \\ 0 \\ -3 \\ 7 \end{pmatrix}$.

Aufgabe 3

Wiederholung des Gram-Schmidt-Verfahrens:

In einem \mathbb{K} -Vektorraum V mit Skalarprodukt $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{K}$ seien n linear unabhängige Vektoren x_1, \ldots, x_n gegeben. Wir wollen ein Orthonormalsystem $u_1, \ldots, u_n \in V$ so konstruieren, dass $\lim \{u_1, \ldots, u_j\} = \lim \{x_1, \ldots, x_j\}$ für alle $j = 1, \ldots, n$ gilt.

Wir bestimmen zunächst nur ein Orthogonalsystem v_1, \ldots, v_n mit der Eigenschaft $\lim\{v_1, \ldots, v_j\} = \lim\{x_1, \ldots, x_j\}$ für alle $j = 1, \ldots, n$. (Bei einem Orthogonalsystem wird nur verlangt, dass die Vektoren orthogonal zueinander sind, nicht aber, dass sie Norm 1 haben.) Die Forderung $\lim\{v_1\} = \lim\{x_1\}$ können wir erfüllen, indem wir $v_1 := x_1$ setzen. Dann geht unser Verfahren rekursiv weiter: Haben wir für ein gewisses $j \in \{1, \ldots, n-1\}$ ein Orthogonalsystem v_1, \ldots, v_j mit $\lim\{v_1, \ldots, v_j\} = \lim\{x_1, \ldots, x_j\}$ gefunden, so ist die Frage, wie wir v_{j+1} definieren sollen. Setzen wir

$$v_{j+1} := x_{j+1} + \sum_{k=1}^{j} \lambda_k v_k$$

mit gewissen $\lambda_k \in \mathbb{K}$, so ist die Forderung $\lim\{v_1, \dots, v_{j+1}\} = \lim\{x_1, \dots, x_{j+1}\}$ erfüllt. Damit dieses v_{j+1} zusätzlich orthogonal zu allen v_i mit $i \in \{1, \dots, j\}$ ist, muss

$$0 \stackrel{!}{=} \langle v_{j+1}, v_i \rangle = \langle x_{j+1}, v_i \rangle + \sum_{k=1}^{j} \lambda_k \langle v_k, v_i \rangle = \langle x_{j+1}, v_i \rangle + \lambda_i \langle v_i, v_i \rangle$$

für alle $i \in \{1, ..., j\}$ gelten. Folglich wählen wir

$$\lambda_i := -\frac{\langle x_{j+1}, v_i \rangle}{\langle v_i, v_i \rangle} = -\frac{\langle x_{j+1}, v_i \rangle}{\|v_i\|^2}.$$

Fassen wir zusammen: Die Vektoren v_1, \ldots, v_n werden rekursiv definiert durch

$$v_1 := x_1, \quad v_{j+1} := x_{j+1} - \sum_{k=1}^{J} \frac{\langle x_{j+1}, v_k \rangle}{\|v_k\|^2} v_k \quad (j = 1, \dots, n-1).$$

Man beachte: Die Vektoren x_1, \ldots, x_n sind nach Voraussetzung linear unabhängig; daher gilt $x_1 \neq 0$ und $x_{j+1} \notin \lim\{x_1, \ldots, x_j\} = \lim\{v_1, \ldots, v_j\}$ für $j = 1, \ldots, n-1$, und damit folgt $v_j \neq 0$ für alle j. Somit ist die Division durch $||v_k||^2$ möglich.

Setzen wir nun noch $u_j := v_j/\|v_j\|$ (j = 1, ..., n), so haben wir ein Orthonormalsystem mit den geforderten Eigenschaften bestimmt.

a) Die gegebenen Vektoren x_1, x_2, x_3 sind linear unabhängig. Um das zu sehen, kann man die Vektoren zeilenweise in eine Matrix schreiben und diese auf Zeilenstufenform bringen:

$$\begin{pmatrix} 1 & 0 & 1 \\ 2 & 2i & 0 \\ 5 & 3i & 1 \end{pmatrix} \xrightarrow{Z_2 \to Z_2 - 2Z_1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2i & -2 \\ 0 & 3i & -4 \end{pmatrix} \xrightarrow{Z_3 \to Z_3 - \frac{3}{2}Z_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2i & -2 \\ 0 & 0 & -1 \end{pmatrix}$$

Führe nun das Gram-Schmidt-Verfahren durch:

$$v_1 := x_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad u_1 := \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Wegen

$$\langle x_2, v_1 \rangle = \langle \begin{pmatrix} 2 \\ 2i \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \rangle = 2 \cdot \overline{1} + 2i \cdot \overline{0} + 0 \cdot \overline{1} = 2$$

erhalten wir

$$v_2 := x_2 - \frac{\langle x_2, v_1 \rangle}{\|v_1\|^2} v_1 = \begin{pmatrix} 2\\2i\\0 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\2i\\-1 \end{pmatrix}, \qquad u_2 := \frac{v_2}{\|v_2\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\2i\\-1 \end{pmatrix}.$$

(Beachte: Es gilt $||v_2|| = (|1|^2 + |2i|^2 + |-1|^2)^{1/2} = \sqrt{6}$.) Für die Berechnung von v_3 brauchen wir die Skalarprodukte

$$\langle x_3, v_1 \rangle = \langle \begin{pmatrix} 5 \\ 3i \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \rangle = 5 \cdot \overline{1} + 3i \cdot \overline{0} + 1 \cdot \overline{1} = 6 ,$$

$$\langle x_3, v_2 \rangle = \langle \begin{pmatrix} 5 \\ 3i \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2i \\ -1 \end{pmatrix} \rangle = 5 \cdot \overline{1} + 3i \cdot \overline{2i} + 1 \cdot \overline{(-1)} = 5 - 6i^2 - 1 = 10 .$$

Damit ergibt sich dann

$$v_3 := x_3 - \sum_{k=1}^2 \frac{\langle x_3, v_k \rangle}{\|v_k\|^2} v_k = \begin{pmatrix} 5\\3i\\1 \end{pmatrix} - \frac{6}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \frac{10}{6} \begin{pmatrix} 1\\2i\\-1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1\\-i\\-1 \end{pmatrix},$$

$$u_3 := \frac{v_3}{\|v_3\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\-i\\-1 \end{pmatrix}.$$

Fazit: u_1, u_2, u_3 ist ein Orthonormalsystem mit den gewünschten Eigenschaften.

b) Wir wollen das Verfahren von Gram-Schmidt benutzen. Dazu prüfen wir zuerst die gegebenen Vektoren y_1, y_2, y_3 auf lineare Unabhängigkeit:

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 5 & 1 & 1 & 1 \\ -3 & -3 & 1 & -3 \end{pmatrix} \xrightarrow{Z_2 \to Z_2 - 5Z_1} \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 6 & -4 & 6 \\ 0 & -6 & 4 & -6 \end{pmatrix} \xrightarrow{Z_3 \to Z_3 + Z_2} \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 6 & -4 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Somit sind y_1, y_2, y_3 linear abhängig, insbesondere können wir an der Zeilenstufenform ablesen, dass y_3 eine Linearkombination von y_1 und y_2 ist (dies ist möglich, da bei den Zeilenumformungen keine Zeilen vertauscht wurden). Infolgedessen gilt $\lim\{y_1, y_2, y_3\} = \lim\{y_1, y_2\}$.

Wir sehen außerdem, dass y_1 und y_2 linear unabhängig sind.

Zur Berechnung einer Orthonormalbasis von $\lim\{y_1,y_2\}$ führen wir nun das Verfahren von Gram-Schmidt durch:

$$v_1 := y_1, \quad u_1 := \frac{v_1}{\|v_1\|} = \frac{v_1}{\sqrt{1+1+1+1}} = \frac{1}{2} y_1 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}.$$

Weiter ist $\langle y_2, v_1 \rangle = 5 - 1 + 1 - 1 = 4$ und wir erhalten

$$v_2 := y_2 - \frac{\langle y_2, v_1 \rangle}{\langle v_1, v_1 \rangle} \, v_1 = \begin{pmatrix} 5 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 0 \\ 2 \end{pmatrix}, \quad u_2 := \frac{v_2}{\|v_2\|} = \frac{1}{\sqrt{24}} \begin{pmatrix} 4 \\ 2 \\ 0 \\ 2 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

Folglich bilden u_1, u_2 eine Orthonormalbasis von $\lim\{y_1, y_2\} = \lim\{y_1, y_2, y_3\}$.

Aufgabe 4

a) Die beiden gegebenen Vektoren haben Norm 1 und sind orthogonal zueinander. Nach a) müssen wir die beiden Vektoren zu einer Orthonormalbasis des \mathbb{C}^3 ergänzen. Dazu bestimmen wir zunächst einen Vektor $z=(z_1,z_2,z_3)\in\mathbb{C}^3$ mit

$$\langle z, \begin{pmatrix} i/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} \rangle = 0$$
 und $\langle z, \begin{pmatrix} 1/2 \\ -i/2 \\ (1-i)/2 \end{pmatrix} \rangle = 0$.

Komponentenweise geschrieben und mit $\sqrt{2}$ bzw. 2 durchmultipliziert bedeutet das

$$-iz_1 - z_2 = 0$$
 und $z_1 + iz_2 + (1+i)z_3 = 0$.

Die erste Gleichung können wir mit $z_1 = 1$ und $z_2 = -i$ erfüllen. Die zweite Gleichung liefert dann $2 + (1+i)z_3 = 0$, also $z_3 = -2/(1+i) = -1+i$. Den so gefundenen Vektor

$$z = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -i \\ -1+i \end{pmatrix}$$

müssen wir noch normieren, also durch seine Norm $||z|| = \sqrt{1^2 + (-i)i + (-1+i)(-1-i)} = \sqrt{1+1+2} = 2$ teilen. Wir ergänzen daher den Vektor

$$\frac{1}{2} \begin{pmatrix} 1 \\ -i \\ -1+i \end{pmatrix}.$$

Bemerkung: Der zu ergänzende Vektor ist nicht eindeutig bestimmt, man kann ihn mit beliebigen Konstanten $c \in \mathbb{C}$, für die |c| = 1 gilt, multiplizieren.

- b) Im folgenden sei $A \in \mathbb{C}^{n \times n}$ eine unitäre Matrix.
 - i) Sei $z \in \mathbb{C}^n$. Dann gilt

$$||Az||^2 = \langle Az, Az \rangle = \langle \underbrace{A^*A}_{=I_2} z, z \rangle = \langle z, z \rangle = ||z||^2.$$

Alternativ:
$$\langle Az, Az \rangle = (\overline{Az})^T Az = (\overline{A}\overline{z})^T Az = \overline{z}^T \overline{A}^T Az = \overline{z}^T (\underbrace{A^* A}_{=L})z = \overline{z}^T z = \langle z, z \rangle.$$

ii) Sei $\lambda \in \mathbb{C}$ so, dass es einen Vektor $z \in \mathbb{C}^n \setminus \{0\}$ gibt mit $Az = \lambda z$. [Ein solches λ heißt Eigenwert von A und z ein zugehöriger Eigenvektor]. Mit Hilfe von i) erhält man dann

$$||z||^2 = \langle z, z \rangle = \langle Az, Az \rangle = \langle \lambda z, \lambda z \rangle = \lambda \langle z, \lambda z \rangle = \lambda \overline{\lambda} \langle z, z \rangle = |\lambda|^2 \langle z, z \rangle = |\lambda|^2 ||z||^2.$$

Division mit $||z||^2 \neq 0$ (wegen $z \in \mathbb{C}^n \setminus \{0\}$) ergibt $|\lambda|^2 = 1$, also $|\lambda| = 1$.

5