Sommersemester 2018 06.06.2018

Prof. Dr. Wolfgang Reichel

Dr. Semjon Wugalter

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik

7. Übungsblatt

Aufgabe 1

Die Funktionen $f,g\colon\mathbb{R}^2\to\mathbb{R}^2$ und $h\colon\mathbb{R}^2\to\mathbb{R}^3$ sind definiert durch

$$f(x,y) = (x^2, y^2), \qquad g(x,y) = (\sin(xy), e^{x+y}), \qquad h(x,y) = (xy, 2x, e^y).$$

Berechnen Sie die Ableitungen von f, g und h und ermitteln Sie dann mit Hilfe der Kettenregel die Ableitungen der Funktionen $g \circ f$ und $h \circ g$. Überprüfen Sie Ihre Ergebnisse, indem Sie $g \circ f$ und $h \circ g$ explizit angeben und ableiten.

Aufgabe 2

Die Funktion $g \colon \mathbb{R}^2 \to \mathbb{R}^2$ ist gegeben durch $g(x,y) = \begin{pmatrix} \cosh x \cos y \\ \sinh x \sin y \end{pmatrix}$.

- a) Zeigen Sie: Es gibt eine Umgebung U von $(\ln 2, \frac{\pi}{2})$ und eine Umgebung V von $(0, \frac{3}{4})$ so, dass U durch die Funktion g bijektiv auf V abgebildet wird. Berechnen Sie die Ableitung der Umkehrfunktion in $(0, \frac{3}{4})$.
- **b)** Zeigen Sie, dass die Funktion g in jedem Punkt $(x, y) \in \mathbb{R}^2$ mit x > 0 lokal invertierbar ist, dass aber g nicht injektiv ist.

Aufgabe 3

- a) Zeigen Sie, dass die Gleichung $z^3 + 2z^2 3xyz + x^3 y^3 = 0$ in einer Umgebung von (0,0,-2) nach z aufgelöst werden kann. Berechnen Sie für die dadurch implizit definierte Funktion g(x,y) die Ableitung g'(0,0).
- b) Zeigen Sie: Durch die beiden Gleichungen

$$x^{2} + y^{2} - u^{2} + v^{2} = 0$$
 und $x^{2} + 2y^{2} - 3u^{2} + 4v^{2} = 1$

werden in einer Umgebung des Punktes (0,0) zwei C^1 -Funktionen u(x,y) und v(x,y) mit u(0,0)=v(0,0)=1 implizit definiert.

Berechnen Sie die partiellen Ableitungen erster Ordnung dieser Funktionen in (0,0).