Prof. Dr. W. Reichel Dr. S.Wugalter

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik

9. Übungsblatt

Aufgabe 1

Die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ ist gegeben durch

$$f(x, y, z) = (z^2 - 1)\sqrt{x^2 + y^2 + z^2}$$
.

Bestimmen Sie Minimum und Maximum von f auf der Menge

$$B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}.$$

Hinweis: Wenn Sie f auf dem Rand von B untersuchen, dann können Sie dies vereinfachen, indem Sie f dort geeignet darstellen.

Aufgabe 2

a) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ ist definiert durch

$$f(x,y) = x + xy.$$

Begründen Sie, dass f auf der Menge

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

Maximum und Minimum annimmt, und berechnen Sie diese.

b) Hat die Funktion

$$g: \mathbb{R}^2 \to \mathbb{R}, \ g(x,y) = x^2 + xy,$$

in \mathbb{R}^2 ein lokales Extremum?

Aufgabe 3

Das Vektorfeld $\vec{g} \colon \mathbb{R}^3 \setminus \{\vec{0}\} \to \mathbb{R}^3$ ist gegeben durch

$$\vec{g}(x,y,z) = \frac{x^2 + y^2 + z^2 - 2}{(x^2 + y^2 + z^2)^2} (x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3).$$

Bestimmen Sie die Rotation und die Divergenz von \vec{q} .

Aufgabe 4

Wir führen auf \mathbb{R}^2 Polarkoordinaten $x = r \cos \varphi$, $y = r \sin \varphi$ ein. Sei $u \colon \mathbb{R}^2 \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion und $v(r,\varphi) := u(r \cos \varphi, r \sin \varphi)$ für r > 0, $\varphi \in (-\pi, \pi)$.

- a) Stellen Sie die partiellen Ableitungen $\frac{\partial v}{\partial r}$ und $\frac{\partial v}{\partial \varphi}$ mit Hilfe der partiellen Ableitungen von u dar.
- b) Zeigen Sie, dass der Laplaceoperator in Polarkoordinaten die folgende Gestalt hat

$$\Delta u(x,y) = \frac{\partial^2 v}{\partial r^2}(r,\varphi) + \frac{1}{r}\frac{\partial v}{\partial r}(r,\varphi) + \frac{1}{r^2}\frac{\partial^2 v}{\partial \varphi^2}(r,\varphi).$$

Aufgabe 5

a) Die Kurve $\gamma \colon [0,2\pi] \to \mathbb{R}^3$ ist gegeben durch $\gamma(t) = (t\cos t, t\sin t, t)$. Berechnen Sie

$$\int_{\gamma} f \, ds \qquad \text{für} \quad f(x, y, z) := 2z - \sqrt{x^2 + y^2} \,.$$

- b) Berechnen Sie jeweils das Kurvenintegral $\int_{\gamma} \vec{v} \cdot d\vec{s}$.
 - i) $\vec{v}(x,y) = (e^x, xy)$, $\gamma(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$
 - ii) $\vec{v}(x, y, z) = (y, -z, x), \quad \gamma(t) = (\sinh t, \cosh t, \sinh t), \quad 0 \leqslant t \leqslant \ln 2$

Hinweis In der großen Übung werden aller Voraussicht nach die folgenden Aufgaben besprochen: 1, 2, 3 und 5. Die restlichen werden in den Tutorien behandelt.