Modulprüfung / Bachelor

Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik

Aufgabe 1 (5 + 5 Punkte)

a) Es sei die Matrix $A \in \mathbb{R}^{2\times 2}$ definiert durch

$$A:=\begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}.$$

Berechnen Sie alle Eigenwerte und zugehörige Eigenvektoren von A. Bestimmen Sie eine invertierbare Matrix S, so dass $S^{-1}AS$ Diagonalgestalt hat. Geben Sie die Matrix $S^{-1}AS$ an. Zeigen Sie darüber hinaus, dass für alle $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \setminus \{(0,0)\}$ gilt:

$$\vec{x}^T A \vec{x} > 0$$

b) Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := e^{2xe^y - 2}.$$

Berechnen Sie das Taylorpolynom von f der Ordnung 1 um den Entwicklungspunkt (1,0). Approximieren Sie damit den Funktionswert f(1.1,0.2). Hat f lokale Extremstellen?

Aufgabe 2 (4+3+3) Punkte

a) Es seien $f, g: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := x^2 + y^2 - x + 2y,$$
 $g(x,y) := x^2 + y^2.$

Bestimmen Sie das Maximum und Minimum von f in $A = \{(x, y) \in \mathbb{R}^2 : g(x, y) \leqslant \frac{5}{16}\}.$

b) Es sei das Vektorfeld $\vec{v}: \mathbb{R}^2/\{(0,0)\} \to \mathbb{R}^2$ definiert durch

$$ec{v}(x,y) := \left(rac{y}{x^2 + y^2}
ight),$$

und $\gamma: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}^2$ mit $\gamma(t) := \begin{pmatrix} \cos(2t) \\ \sin(2t) \end{pmatrix}$. Zeigen Sie, dass

$$\int_{\gamma} ec{v} \cdot dec{s} = -2\pi.$$

Ist \vec{v} ein Potentialfeld? Begründen Sie Ihre Antwort.

c) Gegeben sei das Vektorfeld $\vec{w}: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$\vec{w}(x,y) := \begin{pmatrix} x^2 + (2a-1)y \\ a^2x + 2y \end{pmatrix},$$

wobei $a \in \mathbb{R}$. Zeigen Sie, dass es genau ein $a \in \mathbb{R}$ gibt, so dass \vec{w} ein Potentialfeld ist und für dieses a bestimmen Sie ein zugehöriges Potential.

Aufgabe 3 (3+4+3) Punkte

- a) Beweisen Sie, dass die Gleichung f(t,x) = 0, wobei $f(t,x) = x^4(t+1) + x^3 + t^2x^2 8$, in einer Umgebung des Punktes $(2,1) \in \mathbb{R}^2$ nach x auflösbar ist. Berechnen Sie für die dadurch implizit definierte Funktion x(t) die Ableitung x'(2).
- b) Wir betrachten das Integral

$$\int_{1}^{2} \int_{\sqrt{y-1}}^{1} e^{x^3} \, dx \, dy.$$

Skizieren Sie den Integrationsbereich vertauschen Sie die Integrationsreihenfolge und berechnen Sie damit den Wert des Integrals.

c) Betrachten Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, gegeben durch

$$f(x,y) := \begin{cases} \frac{x^5 + y^5}{x^4 + y^4}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Zeigen Sie, dass f stetig in (0,0) ist. Untersuchen Sie f in (0,0) auf partielle Differenzierbarkeit bezüglich x und berechnen Sie gegebenenfalls $\frac{\partial f}{\partial x}(0,0)$.

Aufgabe 4 (5 + 5 Punkte)

a) Es sei das Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch

$$ec{v}(x,y,z) := egin{pmatrix} x^2 - y^2 \ -2xy \ rac{z^2}{2} + x \end{pmatrix}$$

sowie sie Menge $A \in \mathbb{R}^3$ definiert durch

$$A := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 3, \ y \ge 0, \ z \ge \sqrt{x^2 + y^2}\}.$$

Mit Hilfe des Divergenzsatzes berechnen Sie den Fluss von \vec{v} durch ∂A , genauer, das Integral $\iint_{\partial A} \vec{v} \cdot d\vec{n}$, wobei \vec{n} das äußere Normalenvektorfeld an den Rand ∂A von A bezeichne.

b) Berechnen Sie den Flächeninhalt von

$$B := \{(x, y, z) \in \mathbb{R}^3 : z = 1 - x^2 - y^2, \, x \ge 0, \, y \ge 0, \, z \ge 0\}.$$

Viel Erfolg!

Nach der Klausur:

Die Klausurergebnisse liegen ab 19.10.2017 im Internet auf der Seite des Campussystems und neben dem Zimmer 2.027 (Geb. 20.30).

Die Klausureinsicht findet am Mittwoch, den **25.10.2017**, von 16 bis 18 Uhr im Fasanengarten Hörsaal (Geb.50.35) statt.

Die müdlichen Nachprüfungen sind in der Woche vom 30.10.2017 bis 03.11.2017.