Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Lösungsvorschläge zum 2. Übungsblatt

Aufgabe 6 (Übung)

Gegeben sei die Differentialgleichung

$$y' = \frac{y}{2x} + \frac{y^{\alpha}}{2}$$

für $\alpha \in \mathbb{R}$.

- a) Lösen Sie für $\alpha = -1$ die Anfangswertprobleme mit $y(2) = \pm \sqrt{\frac{3}{2}}$.
- **b)** Lösen Sie für $\alpha = -2$ die Anfangswertprobleme mit $y(1) = \pm 1$.

LÖSUNGSVORSCHLAG

a) Die Koeffizientenfunktionen sind stetig auf $(0,\infty)$ (wir wählen das Intervall, in dem unser Anfangspunkt liegt). Wir multiplizieren unsere Gleichung mit 2y und definiere $z=y^2$. Somit folgt

$$z' = 2yy' = \frac{y^2}{x} + 1 = \frac{z}{x} + 1.$$

Der Anfangswert transformiert sich zu $z(2)=(y(2))^2=\frac{3}{2}$. Zur Lösung dieses Anfangswertproblems berechnen wir

$$A(x) = \int_{2}^{x} \frac{1}{t} dt = \log(x) - \log(2) = \log(\frac{x}{2})$$

und

$$\int_{2}^{x} \frac{2}{t} dt = 2\log(x) - 2\log(2) = 2\log(\frac{x}{2}).$$

Somit ist z gegeben durch

$$z(x) = \frac{3x}{4} + x\log(\frac{x}{2}).$$

Die Rücktransformation liefert

$$y(x) = \pm \sqrt{\frac{3x}{4} + x \log(\frac{x}{2})}.$$

Wenn wir nun den Anfangswert einsetzen, sehen wir, dass für $y(2) = \sqrt{\frac{3}{2}}$ die Lösung

$$y(x) = \sqrt{\frac{3x}{4} + x \log(\frac{x}{2})}$$

und für
$$y(2) = -\sqrt{\frac{3}{2}}$$

$$y(x) = -\sqrt{\frac{3x}{4} + x\log(\frac{x}{2})}$$

lautet für $x > 2e^{-\frac{3}{4}}$, da der Ausdruck in der Wurzel nur dann positiv ist.

b) Die Koeffizientenfunktionen sind stetig auf $(0, \infty)$ (wir wählen das Intervall, in dem unser Anfangspunkt liegt). Nun multiplizieren wir mit $3y^2$ und definieren $z = y^3$. Es folgt

$$z' = 3y^2y' = \frac{3y^2}{2x} + \frac{3}{2} = \frac{3}{2x}z + \frac{3}{2}$$

Der Anfangswert wird zu $z(1) = (y(1))^3 = \pm 1$. Durch die unterschiedlichen Anfangswerte lösen wir die lineare Gleichung für z ohne Anfangswert. Es folgt

$$A(x) = \int \frac{3}{2x} dx = \frac{3}{2} \log(x) + C = \log(x^{\frac{3}{2}}) + C$$

und daher

$$z(x) = e^{A(x)} \int e^{-A(x)} \frac{3}{2} dx = x^{\frac{3}{2}} \int \frac{3}{2} x^{-\frac{3}{2}} dx = x^{\frac{3}{2}} \cdot ((-3x^{-\frac{1}{2}}) + C) = Cx^{\frac{3}{2}} - 3x$$

Für y(1) = z(1) = 1 folgt die Lösung

$$z(x) = 4x^{\frac{3}{2}} - 3x$$

und somit

$$y(x) = \sqrt[3]{4x^{\frac{3}{2}} - 3x}$$

für alle $x > \frac{9}{16}$ (da nur dort der Ausdruck in der Wurzel positiv ist).

Für y(1) = z(1) = -1 folgt die Lösung

$$z(x) = 2x^{\frac{3}{2}} - 3x$$

und somit

$$y(x) = -\sqrt[3]{3x - 2x^{\frac{3}{2}}}$$

für alle $0 < x < \frac{9}{4}$ (da nur dort der Ausdruck in der Wurzel positiv ist). Das Vorzeichen resuliert aus dem Anfangswert von y.

Aufgabe 7 (Tutorium)

Lösen Sie die folgenden Anfangswertprobleme bzw. geben Sie bei \mathbf{c}) die allgemeine Lösung der Differentialgleichung an:

a)
$$y' = x(y + y^2)$$
 mit $y(0) = 1$.

b)
$$y^3 - \frac{1}{3x^2+3} + xy^2y' = 0$$
 mit $y(1) = 1$.

c)
$$y' + y - y^3 = 0$$
 mit $y(0) = \frac{1}{2}$.

LÖSUNGSVORSCHLAG

a) Bei der Differentialgleichung handelt es sich um eine Bernoullische Differentialgleichung ($\alpha = 2$). Wegen y(0) = 1, interessieren wir uns zunächst für Lösungen y > 0. Für solche darf man die Differentialgleichung durch $-y^2(x)$ dividieren und erhält die äquivalente Gleichung

$$-\frac{y'(x)}{y^2(x)} = -x\left(\frac{1}{y(x)} + 1\right).$$

Definiere $z(x) = \frac{1}{y(x)}$. Wegen y > 0 ist z definiert und differenzierbar mit $z'(x) = -\frac{y'(x)}{y^2(x)}$. Die obige Gleichung lautet dann

$$z' = -x(z+1).$$

Dies ist eine lineare Differentialgleichung für z. Eine partikuläre Lösung $z_p(x) = -1$ ist leicht zu erraten. Die allgemeine Lösung z_h der homogenen Gleichung ist durch

$$z_h(x) = Ce^{-\frac{x^2}{2}}$$

mit der freien Konstanten $C \in \mathbb{R}$ gegeben. Die allgemeine Lösung der inhomogenen Gleichung lautet also $z(x) = z_p(x) + z_h(x) = -1 + Ce^{-\frac{x^2}{2}}$. Durch die Anfangsbedingung $z(0) = \frac{1}{y(0)} = 1$ wird C = 2 festgelegt. Es gilt

$$z(t) > 0 \Leftrightarrow -1 + 2e^{-\frac{x^2}{2}} > 0 \Leftrightarrow -\frac{x^2}{2} > -\log(2) \Leftrightarrow |x| < \sqrt{2\log(2)} := x_0.$$

Also ist die Lösung y der ursprünglichen Gleichung zumindest auf dem Intervall $I = (-x_0, x_0)$ existent und eindeutig durch

$$y(x) = \frac{1}{z(x)} = \frac{1}{2e^{-\frac{x^2}{2}} - 1}$$

für alle $x \in I$ gegeben. Wegen

$$\lim_{x \to -x_0+} y(x) = \lim_{x \to x_0-} y(x) = \infty$$

ist sie weder nach links noch nach rechts weiter fortsetzbar.

b) Wir teilen die Gleichung durch $xy(x)^2$ und erhalten

$$y'(x) = -\frac{1}{x}y(x) + \frac{1}{3x^3 + 3x}y(x)^{-2}$$

also eine Bernoullische Differentialgleichung mit $\alpha = -2$. Setzen wir $z(x) := y(x)^{1-\alpha} = y(x)^3$, so finden wir die lineare Differentialgleichung

$$z'(x) = -\frac{3}{x}z(x) + \frac{1}{x^3 + x}$$
.

Die allgemeine Lösung dieser Gleichung ist nach Aufgabe 4 d) gegeben durch $z(x) = c \frac{1}{x^3} + \frac{1}{x^2} - \frac{1}{x^3}$ arctan(x). Nach Resubstitution erhalten wir

$$y(x) = \left(c\frac{1}{x^3} + \frac{1}{x^2} - \frac{1}{x^3}\arctan(x)\right)^{1/3}, \quad c \in \mathbb{R}.$$

3

Einsetzen der Anfangsbedingung y(1) = 1 liefert $c = \frac{\pi}{4}$. Damit ist schließlich

$$y(x) = \left(\frac{\pi}{4} \frac{1}{x^3} + \frac{1}{x^2} - \frac{1}{x^3} \arctan(x)\right)^{1/3}, \quad \text{für } x > 0,$$

die Lösung des Anfangswertproblems.

c) Dies ist eine Bernoullische Differentialgleichung mit $\alpha = 3$. Wir setzen daher $z(x) := y(x)^{1-\alpha} = y(x)^{-2}$. Dann erhalten wir für z die lineare Differentialgleichung

$$z'(x) = 2z(x) - 2.$$

Die allgemeine Lösung der zugehörige homogenen Differentialgleichung z'(x)=2z(x) ist gegeben durch $z(x)=ce^{2x}$, $c\in\mathbb{R}$. Durch Variation der Konstanten c lässt sich nun eine spezielle Lösung ermitteln. Wir machen den Ansatz $z(x)=c(x)e^{2x}$ und setzen ihn in die inhomogene Differentialgleichung ein. Damit erhalten wir $c'(x)=-2e^{-2x}$, also $c(x)=e^{-2x}$ und somit $z_p(x)=1$. Also erhalten wir als allgmeine Lösung

$$z(x) = 1 + ce^{2x}$$
 bzw. $y(x) = \pm \frac{1}{\sqrt{1 + ce^{2x}}}$.

Die Anfangsbedingung $y(0) = \frac{1}{2}$ impliziert c = 3. Somit ist $y(x) = \frac{1}{\sqrt{1+3e^{2x}}}$ die gesuchte Lösung.

Aufgabe 8 (Übung)

Finden Sie die allgemeine Lösung der Differentialgleichung

$$y' = e^{-x}y^2 + y - e^x$$
.

Hinweis: Eine erste Lösung ist gegeben durch $u(x) = e^{ax}$ für ein $a \in \mathbb{R}$.

LÖSUNGSVORSCHLAG

Zunächst bestimmen wir eine spezielle Lösung der Gleichung mit dem gegebenen Ansatz $y_0(x) = e^{ax}$. Einsetzen liefert

$$(a-1)e^{ax} = e^{(2a-1)x} - e^x$$
.

und für a = 1 gilt Gleichheit. Somit ist $y_0(x) = e^x$ eine Lösung der Gleichung.

Die weiteren Lösungen der Riccatischen Differentialgleichung bekommen wir nun mit dem Ansatz $u := y - y_0 = y - e^x$. Dieser liefert für die Funktion u die Gleichung

$$u'(x) = (1 + 2y_0(x)e^{-x})u(x) + e^{-x}u(x)^2$$
 also $u'(x) = 3u(x) + e^{-x}u(x)^2$.

Dies ist eine Bernoullische Differentialgleichung mit $\alpha=2$. Sie hat $u\equiv 0$ als eine Lösung; alle anderen Lösungen erhalten wir, indem wir $z(x):=u(x)^{1-\alpha}=u(x)^{-1}$ substituieren. Dies führt auf

$$z'(x) = -3z(x) - e^{-x}$$
.

Die homogene Gleichung z'(x)=-3z(x) hat die allgemeine Lösung $z_h(x)=ce^{-3x}$, $c\in\mathbb{R}$, und mittels Variation der Konstanten erhalten wir $z_p(x)=-\frac{1}{2}e^{-x}$ als spezielle Lösung der inhomogen Gleichung. Die allgemeine Lösung der Gleichung für z ist damit

$$z(x) = ce^{-3x} - \frac{1}{2}e^{-x}, \qquad c \in \mathbb{R}.$$

Nun ermitteln wir die Nullstellen von z. Aus $z(\xi)=0$ folgt $e^{2\xi}=2c$. Für $c\leq 0$ hat z also keine Nullstelle, für c>0 ist $\xi=\frac{\log(2c)}{2}$ die einzige Nullstelle von z. Für jedes $c\in\mathbb{R}$ erhalten wir also durch

$$u(x) = \frac{1}{z(x)} = \frac{1}{ce^{-3x} - \frac{1}{2}e^{-x}}$$

eine Lösung von $u' = 3u + e^{-x}u^2$, wobei $x \in \mathbb{R}$ falls $c \le 0$ und $x \in (-\infty, \frac{\log(2c)}{2})$ oder $x \in (\frac{\log(2c)}{2}, \infty)$ falls c > 0 gilt. Zusammen mit $u \equiv 0$ sind dies alle Lösungen von $u' = 3u + e^{-x}u^2$. Für die ursprüngliche Gleichung haben wir also die Lösungen

$$y_0(x) = e^x$$
 und $y(x) = e^x + \frac{2}{2ce^{-3x} - e^{-x}}, c \in \mathbb{R}.$

auf den entsprechenden Intervallen \mathbb{R} oder $(-\infty, \frac{\log(2c)}{2})$ bzw. $(\frac{\log(2c)}{2}, \infty)$ je nach Wahl von c.

Aufgabe 9 (Tutorium)

Lösen Sie die folgenden Anfangswertprobleme:

a) $y' = y^2 - (2x+1)y + 1 + x + x^2$ mit $y(0) = \frac{1}{3}$.

Hinweis: Benutzen Sie den Ansatz u(x) = ax, um eine Lösung der Differentialgleichung zu erhalten.

b) $y' + (1 - 4x)y + 2xy^2 = 1 - 2x \text{ mit } y(0) = \frac{3}{2}$.

Hinweis: Benutzen Sie den Ansatz u(x) = a, um eine Lösung der Differentialgleichung zu erhalten.

LÖSUNGSVORSCHLAG

a) Bei der Differentialgleichung handelt es sich um eine Riccatische Differentialgleichung. Setzen wir den Ansatz ein, so ergibt sich

$$a = a^2x^2 - (2x+1)ax + 1 + x + x^2 = (1-a)^2x^2 + (1-a)x + 1$$

also ist für a = 1 eine spezielle Lösung y_p durch

$$y_p(x) = x$$

für alle $x \in \mathbb{R}$ gegeben. Setze $z = y - y_p$. Dann erfüllt y genau dann die Differentialgleichung, wenn

$$z'(x) = y'(x) - y'_p(x)$$

$$= y^2(x) - y^2_p(x) - (2x+1)(y(x) - y_p(x))$$

$$= (y(x) - y_p(x))(y(x) + y_p(x)) - (2x+1)z(x)$$

$$= z(x)(z(x) + 2y_p(x)) - (2x+1)z(x)$$

$$= z^2(x) - z(x)$$

erfüllt. Dies ist eine Bernoullische Differentialgleichung. Für den Anfangswert gilt

$$z(0) = y(0) - y_p(0) = \frac{1}{3} > 0.$$

Deswegen interessieren wir uns zunächst für Lösungen z > 0. Für solche darf man die Differentialgleichung für z durch $z^2(x)$ dividieren und erhält die äquivalente Gleichung

$$\frac{z'(x)}{z^2(x)} = 1 - \frac{1}{z(x)}.$$

Definiere $w(x) = \frac{1}{z(x)}$. Wegen z > 0 ist w differenzierbar mit $w'(x) = -\frac{z'(x)}{z^2(x)}$. Die obige Differentialgleichung lautet dann

$$-w'(x) = 1 - w(x).$$

Dies ist eine lineare Differentialgleichung für w. Eine partikuläre Lösung $w_p=1$ ist leicht zu erraten. Die allgemeine Lösung w_h der homogenen Gleichung ist durch

$$w_h(x) = Ce^x$$

mit der freien Konstanten $C \in \mathbb{R}$ gegeben. Die allgemeine Lösung der inhomogenen Gleichung lautet also $w(x) = w_h(x) + w_p(x) = 1 + Ce^x$. Durch die Anfangsbedingung $w(0) = \frac{1}{z(0)} = 3$ wird C = 2 festgelegt. Damit ist w(x) > 0 für alle $x \in \mathbb{R}$ und

$$z(x) = \frac{1}{w(x)} = \frac{1}{1 + 2e^x}$$
, bzw. $y(x) = y_p(x) + z(x) = x + \frac{1}{1 + 2e^x}$

für alle $x \in \mathbb{R}$. Das obige y ist die eindeutige, nicht weiter fortsetzbare Lösung des ursprünglichen Anfangswertproblems.

b) Es handelt sich wieder um eine Riccatische Differentialgleichung. Setzen wir den Ansatz ein, so erhalten wir

$$a - 2a(2-a)x = 0 + (1-4x)a + 2xa^2 = 1 - 2x$$

womit eine erste Lösung durch $\phi(x) = 1$ für alle $x \in \mathbb{R}$ gegeben ist. Setzen wir $u = y - \phi$, so erfüllt u die Differentialgleichung

$$u' + u + 2xu^2 = u' + ((1 - 4x) + 2 \cdot 2x)u + 2xu^2 = 0.$$

Dies ist eine Bernoullische Differentialgleichung (mit $\alpha=2$). Der Anfangswert ergibt sich zu

$$u(0) = y(0) - \phi(0) = \frac{3}{2} - 1 = \frac{1}{2} > 0,$$

womit wir uns für positive Lösungen interessieren. Dividieren durch $-y^2$ und die Substitution $z=u^{-1}$ liefern für z die Differentialgleichung

$$z'=z+2x$$

Der Anfangswert ergibt sich hierbei zu $z(0) = (y(0))^{-1} = 2$. Für diese lineare Differentialgleichung erster Ordnung gilt

$$A(x) = \int_0^x a(t) dt = \int_0^x 1 dt = x$$

und

$$\int_0^x e^{-A(t)}b(t) dt = 2 \int_0^x e^{-t}t dt \stackrel{\text{P.I.}}{=} 2[-te^{-t}]_0^x + 2 \int_0^x e^{-t} dt = -2[(t+1)e^{-t}]_0^x = 2 - 2(x+1)e^{-x}.$$

Die Lösung des inhomogenen Problems ist deshalb

$$z(x) = 2e^{A(x)} + e^{-A(x)} \int_0^x e^{-A(t)} b(t) dt = 2e^x + 2e^x - 2(x+1) = 4e^x - 2(x+1).$$

Resubstitution liefert

$$u(x) = \frac{1}{4e^x - 2(x+1)}$$

und schließlich

$$y(x) = \frac{1}{4e^x - 2(x+1)} + 1.$$

Aufgabe 10 (Übung)

a) Bestimmen Sie die allgemeine Lösung von

$$xy'' - (2x+1)y' + (x+1)y = (x^2+1)e^x$$
.

Hinweis: Benutzen Sie den Ansatz $u(x) = e^{ax}$ für eine Lösung der homogenen Gleichung.

b) Bestimmen Sie eine homogene lineare Differentialgleichung 2. Ordnung, welche

$${y_1(x) = e^x, y_2(x) = \cos(2x)}$$

als Fundamentalsystem besitzt.

Hinweis: Benutzen Sie die Wronski-Determinante.

LÖSUNGSVORSCHLAG

a) Durch Einsetzen des Ansatzes in die homogene Gleichung sieht man leicht, dass die Gleichung für a=1 erfüllt ist und somit $u(x)=\mathrm{e}^x$ eine Lösung ist. Nun können wir das Reduktionsverfahren von d'Alembert anwenden, um die allgemeine Lösung zu finden. Der Ansatz y(x)=w(x)u(x) führt auf

$$xy'' - (2x+1)y' + (x+1)y = x(w''u + 2w'u' + wu'') - (2x+1)(w'u + wu') + (x+1)uw$$
$$= xe^x w'' - e^x w' \stackrel{!}{=} (x^2+1)e^x.$$

D.h. v:=w' erfüllt die Gleichung $v'=\frac{1}{x}v+x+\frac{1}{x}$. Lösung der zugehörigen homogenen Gleichung ist $v_{\text{hom}}(x)=c\exp\left(\int 1/x \ \mathrm{d}x\right)=cx$, $c\in\mathbb{R}$. Eine spezielle Lösung erhalten wir nun mittels Variation der Konstanten, d.h. wir machen den Ansatz y(x)=c(x)x. Einsetzen liefert

$$c'(x)x = x + \frac{1}{x}$$
 \iff $c'(x) = 1 + \frac{1}{x^2}$ \iff $c(x) = x - \frac{1}{x} + d$, $d \in \mathbb{R}$.

D.h. $v_p(x) = (x - \frac{1}{x})x = x^2 - 1$ ist ein spezielle Lösung. Die allgemeine Lösung der Differentialgleichung für v ist somit gegeben durch

$$v(x) = x^2 - 1 + cx$$
, $c \in \mathbb{R}$.

Für w erhalten wir damit $w(x) = \frac{1}{3}x^3 - x + c_1x^2 + c_2$, $c_1, c_2 \in \mathbb{R}$, und als allgemeine Lösung schließlich

$$y(x) = w(x)u(x) = (\frac{1}{3}x^3 - x)e^x + c_1x^2e^x + c_2e^x$$
, für $x \in \mathbb{R}$, $c_1, c_2 \in \mathbb{R}$.

7

b) Wir suchen zwei Funktionen p und q, sodass y_1 und y_2 die homogene lineare Differentialgleichung y'' + py' + qy = 0 lösen. Dann erfüllt die Wronski-Determinante

$$w(x) = y_1(x)y_2'(x) - y_1'(x)y_2(x)$$

die Gleichung

$$\begin{split} w'(x) &= y_1'(x)y_2'(x) + y_1(x)y_2''(x) - y_1''(x)y_2(x) - y_1'(x)y_2'(x) = y_1(x)y_2''(x) - y_1''(x)y_2(x) \\ &= y_1(x)\Big(-p(x)y_2'(x) - q(x)y_2(x)\Big) - y_2(x)\Big(-p(x)y_1'(x) - q(x)y_1(x)\Big) \\ &= -p(x)\Big(y_1(x)y_2'(x) - y_1'(x)y_2(x)\Big) \\ &= -p(x)w(x). \end{split}$$

Für $y_1(x) = e^x$ und $y_2(x) = \cos(2x)$ gilt dann

$$w(x) = -2e^{x} \sin(2x) - e^{x} \cos(2x),$$

$$w'(x) = -5e^{x} \cos(2x).$$

Dies führt auf

$$p(x) = -\frac{w'(x)}{w(x)} = -\frac{5\cos(2x)}{\cos(2x) + 2\sin(2x)}.$$

Setzen wir y_1 in die Gleichung ein, so erhalten wir für q

$$e^{x} + p(x)e^{x} + q(x)e^{x} = 0$$
 \iff $q(x) = -1 - p(x) = \frac{4\cos(2x) - 2\sin(2x)}{\cos(2x) + 2\sin(2x)}.$

Als Differentialgleichung erhalten wir schließlich

$$(\cos(2x) + 2\sin(2x))y'' - 5\cos(2x)y' + (4\cos(2x) - 2\sin(2x))y = 0.$$

Aufgabe 11 (Tutorium)

Bestimmen Sie die allgemeine Lösung der folgenden Differentialgleichungen. Finden Sie in ${\bf b}$) danach noch die Lösung des Anfangswertproblems.

a)
$$y''(x) + \frac{2x}{1-x^2}y'(x) - \frac{2}{1-x^2}y(x) = 0$$
 für $0 < x < 1$.

Hinweis: Benutzen Sie den Ansatz u(x) = ax für eine Lösung der homogenen Gleichung.

b)
$$y''(x) - \left(4 + \frac{2}{x}\right)y'(x) + \left(4 + \frac{4}{x}\right)y(x) = 2e^{2x} \text{ für } x > 0, \ y(1) = y'(1) = -e^2.$$

Hinweis: Benutzen Sie den Ansatz $u(x) = e^{ax}$ für eine Lösung der homogenen Gleichung.

LÖSUNGSVORSCHLAG

a) Es handelt sich bei der Differentialgleichung um eine homogene lineare Differentialgleichung zweiter Ordnung mit nichtkonstanten Koeffizienten. Man erkennt, dass u(x) = x eine Lösung ist.

Um die allgemeine Lösung y der Differentialgleichung zu finden, machen wir den Ansatz (Verfahren von d'Alembert) y(x) = v(x)u(x). Einsetzen in die Differentialgleichung liefert:

$$y''(x) + \frac{2x}{1 - x^2} y'(x) - \frac{2}{1 - x^2} y(x) = v''(x)u(x) + 2v'(x)u'(x) + v(x)u''(x) + \frac{2x}{1 - x^2} (v'(x)u(x) + v(x)u'(x)) - \frac{2}{1 - x^2} v(x)u(x)$$

$$= v''(x)u(x) + v'(x) \left[2u'(x) + \frac{2x}{1 - x^2} u(x) \right] + \frac{2x}{1 - x^2} v(x) \left[\frac{2}{1 - x^2} - \frac{2x}{1 - x^2} u(x) \right]$$

$$= 0$$

$$\Rightarrow v''(x) + 2v'(x) \left(\frac{1}{x} + \frac{x}{1 - x^2} \right) = 0$$

Dies ist eine lineare Differentialgleichung erster Ordnung für v'. Es gilt

$$\int \frac{2}{x} \, dx = 2 \log(x) \text{ und } \int \frac{2x}{1 - x^2} \, dx = -\log(1 - x^2)$$

auf I=(0,1). Damit ist $v'(x)=C\frac{1-x^2}{x^2}=C\left(\frac{1}{x^2}-1\right)$ die allgemeine Lösung der Differentialgleichung für v'. Unbestimmte Integration liefert

$$v(t) = C_1 \left(\frac{1}{x} + x\right) + C_2$$

als allgemeine Lösung für v. Damit ist $y(x) = C_1(1+x^2) + C_2x$ für alle 0 < x < 1 mit Konstanten $C_1, C_2 \in \mathbb{R}$ die allgemeine Lösung der Differentialgleichung.

b) Wir machen zunächst einen Ansatz, um eine nichttriviale Lösung der zugehörigen homogenen Gleichung zu finden:

$$u(x) = e^{\lambda x}$$

Einsetzen in die Differentialgleichung liefert:

$$u''(x) - \left(4 + \frac{2}{x}\right)u'(x) + \left(4 + \frac{4}{x}\right)u(x) = \lambda^2 e^{\lambda x} - \left(4 + \frac{2}{x}\right)\lambda e^{\lambda x} + \left(4 + \frac{4}{x}\right)e^{\lambda x}$$
$$= e^{\lambda x}\left(\lambda^2 - 4\lambda + 4 + \frac{1}{x}(4 - 2\lambda)\right) = 0$$
$$\Leftrightarrow (\lambda - 2)^2 + 2\frac{2 - \lambda}{x} = (2 - \lambda)\left(2 - \lambda + \frac{2}{x}\right) = 0$$
$$\Leftrightarrow 2 = \lambda$$

Also ist $u(x) = e^{2x}$ eine partikuläre Lösung der obigen Differentialgleichung.

Um die allgemeine Lösung y der Differentialgleichung zu finden, machen wir den Ansatz (Verfahren von d'Alembert) y(x) = v(x)u(x). Einsetzen in die Differentialgleichung liefert:

$$y''(x) - \left(4 + \frac{2}{x}\right)y'(x) + \left(4 + \frac{4}{x}\right)y(x) = v''(x)u(x) + 2v'(x)u'(x) + v(t)u''(x) - \left(4 + \frac{2}{x}\right)(v(x)u'(x) + v'(x)u(x)) + \left(4 + \frac{4}{x}\right)v(x)u(x)$$

$$= v''(x)u(x) + v'(x)\left[2u'(x) - \left(4 + \frac{2}{x}\right)u(x)\right] + v(x)\left[u''(x) - \left(4 + \frac{2}{x}\right)u'(x) + \left(4 + \frac{4}{x}\right)u(x)\right]$$

$$= v''(x)u(x) + v'(x)\left[2u'(x) + \left(4 - \frac{2}{x}\right)u(x)\right] \stackrel{!}{=} 2e^{2x}$$

$$\Leftrightarrow v''(x) + v'(x)\left[\frac{2u'(x)}{u(x)} - \left(4 + \frac{2}{x}\right)\right] = v''(x) - \frac{2}{x}v'(x) \stackrel{!}{=} 2$$

Dies ist eine lineare Differentialgleichung erster Ordnung für v'. Es gilt

$$\int \frac{2}{x} dx = 2\log(x), \quad \text{sowie} \quad \int \frac{1}{x^2} 2 dx = -\frac{2}{x}.$$

Also ist

$$v'(x) = Cx^2 - 2x$$

die allgemeine Lösung der Differentialgleichung für v'. Unbestimmte Integration liefert

$$v(x) = C_1 x^3 - x^2 + C_2$$

als allgemeine Lösung für v. Damit ist

$$y(x) = C_1 x^3 e^{2x} + C_2 e^{2x} - x^2 e^{2x}$$

für alle x > 0 mit Konstanten $C_1, C_2 \in \mathbb{R}$ die allgemeine Lösung der Differentialgleichung. Für die Lösung des Anfangswertproblems berechnen wir nun noch

$$y'(x) = 2C_1x^3e^{2x} + (3C_1 - 2)x^2e^{2x} - 2xe^{2x} + 2C_2e^{2x}$$

und sehen $y(1) = (C_1 + C_2 - 1)e^2$ sowie $y'(1) = (5C_1 + 2C_2 - 4)e^2$. Damit die Anfangswerte erfüllt sind, muss nun einerseits $C_1 + C_2 - 1 = -1$, also $C_2 = -C_1$ und zum anderen $5C_1 - 2C_1 - 4 = -1$, also $C_1 = 1$. Somit ist die Lösung gegeben durch

$$y(x) = x^3 e^{2x} - C_2 e^{2x} - x^2 e^{2x}$$