Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik

Dr. Andreas Müller-Rettkowski

Wintersemester 2013/14 Blatt $5\frac{1}{2}$ vom 20.12.2013

TOBIAS RIED, M.Sc.

http://www.math.kit.edu/iana1/lehre/hm3etec2013w/

Lösungsvorschläge

1. Integrierender Faktor, II

Lösen Sie die folgenden Differentialgleichungen, indem Sie einen integrierenden Faktor μ der angegebenen Form bestimmen.

(a)
$$(3xy^3 - 4xy + y)y' + y^4 - 2y^2 = 0$$
, $\mu(x, y) = \rho(x^{\alpha}y^{\beta})$, mit geeignetem $\alpha, \beta \in \mathbb{R}$

(b)
$$xy^2 + y - (x \ln x)y' = 0$$
, $\mu(x, y) = \frac{1}{x}y^{\alpha}$, mit geeignetem $\alpha \in \mathbb{R}$.

Lösung:

(a) In Übungsblatt 3 wurde bewiesen, dass die Funktion $\rho(\psi(x,y))$, im vorliegenden Fall $\psi(x,y) = x^{\alpha}y^{\beta}$, der Differentialgleichung

$$\rho'(\psi(x,y)) = \rho(\psi(x,y)) \frac{D_2 f(x,y) - D_1 g(x,y)}{g(x,y)D_1 \psi(x,y) - f(x,y)D_2 \psi(x,y)}.$$
 (1)

genügen muss $(f, g \text{ aus der Differentialgleichung } f \, dx + g \, dy = 0$, hier $f(x, y) = y^4 - 2y^2$, $g(x, y) = 3xy^3 - 4xy + y$.

Damit wird (1) zu

$$\rho'(x^{\alpha}y^{\beta}) = \rho(x^{\alpha}y^{\beta}) \frac{4y^{3} - 4y - 3y^{3} + 4y}{\alpha x^{\alpha - 1}y^{\beta}(3xy^{3} - 4xy + y) - \beta y^{\beta - 1}x^{\alpha}(y^{4} - 2y^{2})}$$
$$= \rho(x^{\alpha}y^{\beta}) \frac{1}{x^{\alpha}y^{\beta}(3\alpha - \beta) + x^{\alpha}y^{\beta - 2}(2\beta - 4\alpha) + \alpha x^{\alpha - 1}y^{\beta - 2}}$$

Der Ansatz ist also nur dann sinnvoll, wenn $x^{\alpha}y^{\beta-2}(2\beta-4\alpha)$ und $\alpha x^{\alpha-1}y^{\beta-2}$ konstant sind oder verschwinden.

Fall 1: $2\beta - 4\alpha = 0$ und $\alpha = 0$. Dies ist nur für $\alpha = \beta = 0$ erfüllbar und somit nicht relevant.

Fall 2: $\alpha x^{\alpha-1} y^{\beta-2}$ konstant $(\neq 0)$ und $x^{\alpha} y^{\beta-2} (2\beta - 4\alpha)$ konstant $(\neq 0)$. Diese Bedingungen sind gleichzeitig nicht erfüllbar.

Fall 3: $2\beta - 4\alpha = 0$ und $\alpha x^{\alpha-1}y^{\beta-2}$ konstant ($\neq 0$). Dies ist genau dann erfüllt wenn $\alpha = 1$ und $\beta = 2$. Dann gilt $\alpha x^{\alpha-1}y^{\beta-2} = 1$ und eingesetzt in die DGL für ρ erhält man

$$\rho'(xy^2) = \rho(xy^2) \frac{1}{xy^2 + 1}$$

also $\rho'(t) = \rho(t) \frac{1}{1+t}$ mit der Lösung (Trennung der Variablen) $\rho(t) = 1 + t$. Ein integrierender Faktor ist damit $\mu_1(x, y) = 1 + xy^2$. Fall 4: $\alpha=0$ und $x^{\alpha}y^{\beta-2}(2\beta-4\alpha)=2\beta y^{\beta-2}$ konstant $(\neq 0)$. Damit muss $\beta=2$ gelten und man hat

$$\rho'(y^2) = \rho(y^2) \frac{1}{4 - 2y^2}$$

bzw. $\rho'(t) = \rho(t) \frac{1}{4-2t}$ mit der Lösung (Trennung der Variablen) $\rho(t) = \frac{1}{\sqrt{4-2t}}$. Ein weiterer integrierender Faktor ist also gegeben durch

$$\mu_2(x,y) = \frac{1}{\sqrt{4 - 2y^2}}.$$

Mit Blatt 4 Aufgabe 2 folgt dann¹, dass die Lösungen der Differentialgleichung gegeben sind durch

$$\frac{\mu_1(x,y)}{\mu_2(x,y)} = (1+xy^2)\sqrt{4-2y^2} = C, \quad C \in \mathbb{R}.$$

Ferner ist $y \equiv 0$ eine triviale Lösung der DGL, welche in dieser Darstellung nicht enthalten ist (sie ist beim Teilen durch y^3 verloren gegangen).

(b) Hier ist $f(x,y) = xy^2 + y$ und $g(x,y) = -x \ln x$. Damit $\mu(x,y) = \frac{1}{x}y^{\alpha}$ ein integrierender Faktor für die angegebene DGL ist, muss $D_2(\mu f) = D_1(\mu g)$ gelten, also

$$D_2(y^{\alpha+2} + \frac{1}{x}y^{\alpha+1}) = D_1(-y^{\alpha} \ln x)$$

$$y^{\alpha} \left[(\alpha+2)y + (\alpha+1)\frac{1}{x} \right] = -\frac{1}{x}y^{\alpha}$$

$$y^{\alpha} \left[(\alpha+2)\left(y + \frac{1}{x}\right) \right] = 0$$

für x>0. Nimmt man an, dass $y\neq 0$ (y=0 ist triviale Lösung der DGL), so ist diese Gleichung für $\alpha=-2$ erfüllbar. In diesem Fall ist also

$$\mu(x,y) = \frac{1}{xy^2}$$

integrierender Faktor. Die DGL wird nach Multiplikation mit μ zu

$$1 + \frac{1}{xy} - \frac{1}{y^2} (\ln x) y' = 0.$$

Ein Potential H = H(x, y) zu dieser exakten DGL berechnet man aus

$$D_1H(x,y) = (\mu f)(x,y) = 1 + \frac{1}{xy}, \quad D_2H(x,y) = (\mu g)(x,y) = -\frac{1}{y^2}\ln x.$$

Integration dieser Gleichungen liefert $H(x,y) = x + \frac{1}{y} \ln x$. Die Lösungen der DGL sind dann gegeben durch

$$x + \frac{1}{y} \ln x = C$$
, $C \in \mathbb{R}$, $x > 0, y \neq 0$,

sowie die triviale Lösung $y \equiv 0$.

¹man überprüfe, dass die Voraussetzungen erfüllt sind

2. Lineare Unabhängigkeit, II

- (a) Sind die Funktionen $f: \mathbb{R} \to \mathbb{C}$ und $\overline{f}: \mathbb{R} \to \mathbb{C}$ linear unabhängig, so sind auch Ref und Imf linear unabhängig und es gilt $\lim\{f,\overline{f}\}=\lim\{\operatorname{Re}f,\operatorname{Im}f\}$.
- (b) Es liege die Differentialgleichung

$$y'' + p(x)y' + q(x)y = 0, \quad x \in I \subset \mathbb{R} \text{ Intervall}, \tag{2}$$

mit stetigen p,q vor. Die Funktionen y_1,y_2 seien Lösungen mit der Eigenschaft

$$y_1(x)y_2'(x) - y_1'(x)y_2(x) \neq 0, \quad x \in I.$$

Begründen Sie, dass $y(x) = c_1 y_1(x) + c_2 y_2(x)$ (c_1, c_2 beliebige Konstanten) die allgemeine Lösung von (2) ist.

Lösung:

(a) Sind f, \overline{f} linear unabhängig, so folgt aus $\alpha f + \beta \overline{f} = 0$, $\alpha, \beta \in \mathbb{C}$, dass $\alpha = \beta = 0$. Sei nun für $\alpha, \beta \in \mathbb{C}$

$$0 = \alpha \operatorname{Re} f + \beta \operatorname{Im} f = \frac{\alpha}{2} (f + \overline{f}) + \frac{\beta}{2i} (f - \overline{f}) = \frac{1}{2} (\alpha - i\beta) f + \frac{1}{2} (\alpha + i\beta) \overline{f}.$$

Dann gilt wegen der Unabhängigkeit von f und \overline{f} , dass

$$\alpha - \mathrm{i}\beta = 0$$

$$\alpha + i\beta = 0$$

und damit $\alpha = \beta = 0$, also Ref und Imf unabhängig.

Es bleibt zu zeigen, dass $\lim\{f,\overline{f}\}=\lim\{\operatorname{Re} f,\operatorname{Im} f\}$. Sei dazu zunächst $g\in \inf\{f,\overline{f}\}$, d.h. es gibt $\alpha,\beta\in\mathbb{C}$, sodass

$$g = \alpha f + \beta \overline{f} = \alpha (\operatorname{Re} f + \operatorname{i} \operatorname{Im} f) + \beta (\operatorname{Re} \overline{f} + \operatorname{i} \operatorname{Im} \overline{f}) = \alpha (\operatorname{Re} f + \operatorname{i} \operatorname{Im} f) + \beta (\operatorname{Re} f - \operatorname{i} \operatorname{Im} f)$$
$$= (\alpha + \beta) \operatorname{Re} f + \operatorname{i} (\alpha - \beta) \operatorname{Im} f.$$

Das bedeutet aber, dass $g \in lin\{Ref, Imf\}$.

Ist umgekehrt $g \in \text{lin}\{\text{Re}f, \text{Im}f\}$, so gibt es $\alpha, \beta \in \mathbb{C}$ mit

$$g = \alpha \operatorname{Re} f + \beta \operatorname{Im} f = \frac{1}{2}(\alpha - i\beta)f + \frac{1}{2}(\alpha + i\beta)\overline{f}$$

und damit $g \in lin{Re f, Im f}$.

(b) Da es sich um eine lineare Differentialgleichung zweiter Ordnung handelt, ist nach Vorlesung der Kern des zugeordneten Differentialoperators $L = D^2 + p(x)D + q(x)$, also der Lösungsraum der homogenen DGL ein zweidimensionaler Teilraum von $\mathbb{C}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{C}\}$. Sind daher die Lösungen y_1, y_2 unabhängig, so ist die allgemeine Lösung der DGL in $\lim\{y_1,y_2\}$.

Betrachte also für $c_1, c_2 \in \mathbb{C}, x \in I$,

$$0 = c_1 y_1(x) + c_2 y_2(x). (3)$$

Diffrenziert man diese Beziehung nach x, erhält man

$$0 = c_1 y_1'(x) + c_2 y_2'(x).$$

Angenommen $c_1 \neq 0$, $c_2 \neq 0$, dann erhält man aus der ersten Gleichung $y_1 = -\frac{c_2}{c_1}y_2$, die zweite Gleichung liefert $y_2' = -\frac{c_1}{c_2}y_1'$. Multiplikation dieser Gleichungen führt dann auf

$$y_1y_2'=y_2y_1'$$

im Widerspruch zur Annahme an y_1 und y_2 . Es können also c_1 und c_2 nicht gleichzeitig von null verschieden sein.

Sei daher o.E. $c_2 = 0$. Dann gilt mit (3) $0 = c_1 y_1(x)$ für alle $x \in I$, und damit $c_1 = 0$ (da nach Voraussetzung y_2 auf I nicht identisch null ist).

Zusammenfassend wurde also $c_1=c_2=0$ gezeigt, und damit ist y_1 unabhängig von y_2 .