Diplom-Vorprüfung

Höhere Mathematik III für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie

Aufgabe 1 (10 Punkte)

a) Bestimmen Sie die Möbiustransformation T, die folgenden Bedingungen genügt:

$$T(0) = 1 + i$$
, $T(-1 - i) = \infty$, $T(\infty) = -1 - i$.

- b) Rechnen Sie nach, dass für diese Möbiustransformation $T = T^{-1}$ gilt.
- c) Bestimmen und skizzieren Sie das Bildgebiet T(G) von

$$G := \{ z \in \mathbb{C} : |z|^2 < 2, \operatorname{Re} z + \operatorname{Im} z > 0 \}.$$

d) Es sei $H := \{ re^{i\varphi} : 0 < r < 1, \ 0 < \varphi < \frac{\pi}{2} \}$. Finden Sie eine Funktion $f : H \to \mathbb{C}$ mit f(H) = T(G). (Hinweis: f ist keine Möbiustransformation.)

Aufgabe 2 (10 Punkte)

Die Funktion f wird definiert durch

$$f(z) := \frac{1}{z^2 + 2i}.$$

a) Berechnen Sie den Wert des Kurvenintegrals $\int_{\gamma} f(z) dz$, wobei γ gegeben ist durch

$$z(t) = (1+i)t, \quad t \in [-1,1].$$

- b) Bestimmen Sie Art und Lage sämtlicher isolierter Singularitäten von f (bei Polen ist die Ordnung anzugeben) sowie die Residuen in diesen Punkten.
- c) Berechnen Sie die Werte der Kurvenintegrale $\int_{\gamma_1} f(z) dz$ und $\int_{\gamma_2} f(z) dz$, wobei $\gamma_1: z_1(t) = 1 i + 2e^{i(\pi t)}, \ t \in [0, \frac{\pi}{2}], \quad \gamma_2: z_2(t) = 1 i + 2e^{it}, \ t \in [-\pi, \frac{\pi}{2}].$ (Hinweis: Es ist empfehlenswert, die Kurven γ_1 und γ_2 zunächst zu skizzieren.)
- d) Es bezeichne Γ die positiv orientierte Kreislinie |z-2|=2. Berechnen Sie

$$\oint_{\Gamma} \frac{\sin(z-1+i)}{z^2+2i} \, dz \, .$$

III–DV 26.9.2001 — bitte wenden —

Aufgabe 3 (10 Punkte)

Es liegt die folgende Differentialgleichung für y = y(x) vor:

$$y' = \frac{1}{e^y + 2x}.$$

- a) Bestimmen Sie alle Lösungen in impliziter Form.
- b) Berechnen Sie die Lösung durch den Punkt (-1,2) in der Form x=g(y).
- c) Berechnen Sie die Lösung durch den Punkt (0,1) in der Form y = h(x), und geben Sie den Definitionsbereich dieser Lösung an.

Aufgabe 4 (10 Punkte)

Betrachten Sie für x > 0 die Differentialgleichung

$$3xy'' + (3x+1)y' + y = 0.$$

- a) Machen Sie einen verallgemeinerten Potenzreihenansatz für die Lösung, und bestimmen Sie die Rekursionsformeln für die Koeffizienten der Lösungsreihen.
- b) Berechnen Sie explizit diese Koeffizienten, geben Sie die allgemeine Lösung der Differentialgleichung an, und stellen Sie dabei eine der Lösungsreihen in geschlossener Form dar.

Nach der Klausur

Die Ergebnisse der Vordiplomklausuren hängen ab Mittwoch, den 10. Oktober, vor dem Sekretariat aus und können auch im Internet abgerufen werden:

http://www.mathematik.uni-karlsruhe.de/~mi1/Schneider/HM/vd-h.html

Die Klausureinsicht findet für diejenigen, die sich einer mündlichen Nachprüfung stellen müssen, am Dienstag, dem 16. Oktober, von 13.15 bis 13.45 Uhr im Seminarraum S 31 (Mathematikgebäude) statt. Ort und Termin für alle übrigen werden noch bekannt gegeben. Die Nachprüfungen selbst sind in der Woche vom 22. bis 26. Oktober.