Diplom-Vorprüfung Höhere Mathematik III für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie

Aufgabe 1 (10 Punkte)

a) Sei

$$v(x,y) = 3x^2y - cy^3 + 2y .$$

Für welche $c \in \mathbb{R}$ existiert eine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ mit

$$f(x+iy) = u(x,y) + iv(x,y) ?$$

Bestimmen Sie diese Funktion f. Geben Sie diese Funktion auch in der Form f = f(z) an.

b) Bestimmen Sie die gebrochen lineare Abbildung, welche die Punkte

$$z_1 = i$$
, $z_2 = 2$, $z_3 = -i$

in die Punkte

$$w_1 = 2$$
, $w_2 = -4i$, $w_3 = -2$

abbildet. Bestimmen Sie ferner das Bild des Kreises

$$\{z \in \mathbb{C} \mid |z| = 17\}$$

unter dieser Abbildung.

Aufgabe 2 (10 Punkte)

Betrachten Sie die Gewöhnlichen Differentialgleichungen

$$\dot{x} = y = f(x, y) ,$$

 $\dot{y} = e^{x-x^3} - 1 = g(x, y) .$

- a) Bestimmen Sie die Fixpunkte (x_j, y_j) , d.h. die Punkte mit $(\dot{x}, \dot{y}) = (0, 0)$.
- b) Bestimmen Sie die Linearisierung $\frac{\partial(f,g)}{\partial(x,y)}$ in den Fixpunkten. Machen Sie Aussagen über die Stabilität der Fixpunkte.
- c) Zeichnen Sie in der (x,y)-Ebene die Nulllinien

$$N_x = \{(x, y) \mid \dot{x} = 0\},\$$

$$N_y = \{(x, y) \mid \dot{y} = 0\},\$$

ein und skizzieren Sie in der (x, y)-Ebene das Phasenbild, d.h. zeichnen Sie typische Lösungen in der (x, y)-Ebene ein.

Aufgabe 3 (10 Punkte)

Berechnen Sie das Integral

$$\int\limits_{0}^{\infty} \frac{1}{64 + t^6} dt$$

mit Hilfe des Residuensatzes.

Aufgabe 4 (10 Punkte)

Gegeben sei eine Funktion f durch

$$f(z) = z^{-3} + 2z^{-2} + z^{-1} + \sum_{k=0}^{\infty} k^3 z^k.$$

- a) Für welche $z \in \mathbb{C}$ ist f(z) endlich?
- b) Gegeben sei der geschlossene Weg Γ , der die 3 Punkte $\frac{1}{2}i$, $-\frac{1}{2}-\frac{1}{2}i$ und $\frac{1}{2}-\frac{1}{2}i$, jeweils durch Geradenstücke verbindet und gegen den Uhrzeigersinn durchlaufen wird. Zeichnen Sie Γ .
- c) Berechnen Sie

$$\int_{\Gamma} f(z)dz,$$

und

$$\int_{\Gamma} z^4 f(z) dz \ .$$

d) Bestimmen Sie den Konvergenzradius r der Taylorreihe von f um den Entwicklungspunkt $z_0 = \frac{1}{2} + \frac{1}{2}i$.

Viel Erfolg!

Hinweise für nach der Klausur:

Die **Ergebnisse** der Vordiplomklausuren hängen ab Montag, dem 11. Oktober 2004, vor dem Sekretariat aus und liegen unter

http://www.mathematik.uni-karlsruhe.de/~mi1/Schneider/HM/vd-h.html

im Internet.

Die Klausureinsicht findet für diejenigen, die sich einer mündlichen Nachprüfung stellen müssen, am Dienstag, dem 19. Oktober 2004, von 13.15 bis 13.45 Uhr im Seminarraum S 31 (Mathematikgebäude) statt.

Die Allgemeine Klausureinsicht für alle übrigen findet, am Mittwoch, dem 03. November 2004, von 15.45 bis 17.15 im S 33 (Mathematikgebäude)statt.

Die Nachprüfungen selbst sind in der Woche vom 25. bis 29. Oktober 2004.