Diplom-Vorprüfung

Höhere Mathematik III für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie

Aufgabe 1 (10 Punkte)

Gegeben seien die Möbiustransformation $w\colon \hat{\mathbb{C}} \to \hat{\mathbb{C}}, \ z \mapsto \frac{z+\sqrt{3}}{-\sqrt{3}z+1}$ sowie die Kreisscheiben in $\hat{\mathbb{C}}$

$$K_1 := \left\{ z \in \hat{\mathbb{C}} \mid \left| z - \frac{1}{\sqrt{3}} \right| \le \frac{2}{\sqrt{3}} \right\}, \quad K_2 := \left\{ z \in \hat{\mathbb{C}} \mid \left| z + \frac{1}{\sqrt{3}} \right| \ge \frac{2}{\sqrt{3}} \right\}.$$

- a) Berechnen Sie $w^2 = w \circ w$.
- b) Zeigen Sie: $w(K_1) = K_2$.
- c) Bestimmen und skizzieren Sie $K_3 := w^2(K_1)$.
- d) Geben Sie (mit Begründung) eine konforme Abbildung $v: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ an, die K_3 auf K_2 abbildet.

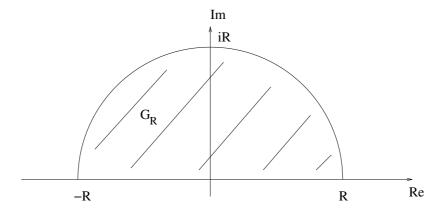
Aufgabe 2 (10 Punkte)

a) Seien f, g und h in $z_0 \in \mathbb{C}$ holomorphe Funktionen auf \mathbb{C} . Es habe g in z_0 eine einfache Nullstelle, während f und h dort nicht verschwinden.

Zeigen Sie:

Res
$$\left(\frac{f}{g}; z_0\right) = \frac{fh}{(gh)'}\Big|_{z=z_0}$$
.

b) Es sei γ_R mit R > 1 der mathematisch positiv orientierte Rand des hier skizzierten Gebiets G_R .



Berechnen Sie unter Verwendung von a)

$$\int_{\gamma_R} \frac{dz}{z^4 + z^3 + z^2 + z + 1} \, .$$

Hinweis: Die Polstellen des Integranden sind fünfte Einheitswurzeln!

c) Bestimmen Sie mithilfe von b) den Wert des reellen Integrals

$$\int_{-\infty}^{\infty} \frac{dx}{x^4 + x^3 + x^2 + x + 1} \,.$$

Aufgabe 3 (10 Punkte)

Die Differentialgleichung

$$y(\ln(xy) + 1) + x(\ln(xy) - 1)y' = 0$$

besitzt einen integrierenden Faktor der Form $\mu(x \cdot y)$.

Bestimmen Sie μ und berechnen Sie für x, y > 0 die allgemeine Lösung der Differentialgleichung in impliziter Darstellung.

Aufgabe 4 (10 Punkte)

Gegeben sei die Differentialgleichung

$$x^2y'' - 2xy' + (x^2 + 2)y = x^3.$$

- a) Begründen Sie, dass $x_0 = 0$ Stelle der Bestimmtheit der zugehörenden homogenen Differentialgleichung ist, und berechnen Sie die Lösungen der zugehörenden determinierenden Gleichung.
- b) Die zugehörende homogene Differentialgleichung besitzt eine Lösung y_1 der Form $y_1(x) = xu(x)$ mit $y'_1(0) = 0$, $y''_1(0) = 2$.

Bestimmen Sie y_1 und die allgemeine Lösung der zugehörenden homogenen Differentialgleichung.

c) Berechnen Sie nun noch die allgemeine Lösung der Ausgangsdifferentialgleichung.

Nach der Klausur

Die Ergebnisse der Vordiplomklausuren hängen ab Mittwoch, den 27. 3, vor dem Sekretariat aus und können auch im Internet abgerufen werden:

http://www.mathematik.uni-karlsruhe.de/~mi1/Schneider/HM/vd-f.html

Die Klausureinsicht findet für diejenigen, die sich einer mündlichen Nachprüfung stellen müssen, am Dienstag, dem 16. 4, von 13.15 bis 13.45 Uhr im Seminarraum S 31 (Mathematikgebäude) statt. Ort und Termin für alle übrigen werden noch bekannt gegeben. Die Nachprüfungen selbst sind in der Woche vom 22. bis 26. April.