
Solution of Problem 1. (a) By definition, (+) is exact if

Dyf(x, y) = Dxg(x, y),

where

f(x, y) := y
( 1
√
xy

+ 1
)

=

√
y

x
+ y,

g(x, y) := −x
( 1
√
xy

− 1
)

= −
√

x

y
+ x,

Since

Dyf(x, y) =
1

2

1
√
xy

+ 1 6= −1

2

1
√
xy

+ 1 = Dxg(x, y),

it follows that (+) is not exact.

(b) We rewrite the given equation as

µ(x, y)
(
√

y

x
+ y

)

dx+ µ(x, y)
(

−
√

x

y
+ x

)

dy = 0. (1)

and let

F (x, y) := µ(x, y)f(x, y) = µ(x, y)
(
√

y

x
+ y

)

,

G(x, y) := µ(x, y)g(x, y) = µ(x, y)
(

−
√

x

y
+ x

)

.

By definition, (1) is exact if

DyF (x, y) = DxG(x, y),

i.e., if
(
Dyµ(x, y)

)
f(x, y) + µ(x, y)Dyf(x, y) =

(
Dxµ(x, y)

)
g(x, y) + µ(x, y)Dxg(x, y)

Dyµ(x, y)
(
√

y

x
+ y

)

+ µ(x, y)
(1

2

1
√
xy

+ 1
)

= Dxµ(x, y)
(

−
√

x

y
+ x

)

+ µ(x, y)
(

− 1

2

1
√
xy

+ 1
)

(

−
√

x

y
+ x

)

Dxµ(x, y)−
(
√

y

x
+ y

)

Dyµ(x, y)−
1

√
xy

µ(x, y) = 0

(c) For µ(x, y) = m(xy) we compute

Dxµ(x, y) = m′(xy)y,

Dyµ(x, y) = m′(xy)x.

By (b) we know that (1) is exact if

(

−
√

x

y
+ x

)

Dxµ(x, y)−
(
√

y

x
+ y

)

Dyµ(x, y)−
1

√
xy

µ(x, y) = 0,

i.e., if

−2
√
xym′(xy)− 1

√
xy

m(xy) = 0,

m′(xy) +
1

2xy
m(xy) = 0.
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Letting z := xy we get

m′(z) +
1

2z
m(z) = 0,

z∫
m′(t)

m(t)
dt = −1

2

z∫
1

t
dt

⇒ m(z) = z−
1

2 .

Going back to the original variables x, y we conclude that

m(xy) =
1

√
xy

is an integrating factor for (+).

(d) By construction, equation

F (x, y)dx+G(x, y)dy = 0

with

F (x, y) = m(xy)f(x, y) =
1

x
+

√
y

x
,

G(x, y) = m(xy)g(x, y) = −1

y
+

√
x

y
,

is exact. Thus, its general solution is given by

H(x, y) = C = constant,

where H satisfies

Hx(x, y) = F (x, y),

Hy(x, y) = G(x, y).

We compute

H(x, y) =

∫

F (x, y)dx = lnx+ 2
√
xy + c(y).

Then, from

Hy(x, y) = G(x, y),

we get

c′(y) = −1

y
and thus c(y) = − ln y.

Therefore, the general solution of (+) is

ln
x

y
+ 2

√
xy = C.

Solution of Problem 2. (a) We compute the first and the second derivatives of u(x):

u′(x) = αeαx,

u′′(x) = α2eαx.
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Plugging them into the given equation, we get

(x+ 1)α2eαx + xαeαx − eαx = 0

eαx
(

α(α+ 1)x
︸ ︷︷ ︸

=0 for α=











0

−1

+ (α+ 1)(α− 1)
︸ ︷︷ ︸

=0 for α=











1

−1

)

︸ ︷︷ ︸

=0 for α=−1

= 0

Thus, u(x) = e−x is a solution of the given equation.

(b) Since x > −1, we can devide both of the sides of the given equation by (x+ 1). We get

y′′ +
x

x+ 1
y′ − 1

x+ 1
y = x+ 1 (2)

We use the suggested ansatz y(x) = v(x)u(x). First we compute the first and the second
derivatives of y:

y′(x) = v′(x)u(x) + v(x)u′(x),

y′′(x) = v′′(x)u(x) + 2v′(x)u′(x) + v(x)u′′(x).

Plugging them into (2), we get

v′′u+ v′
(
2u′ +

x

x+ 1
u
)
+ v

(
u′′ +

x

x+ 1
u′ − 1

x+ 1
u
)

︸ ︷︷ ︸

=0
since u solves
the homog. eq.

= x+ 1. (3)

Now we let w(x) := v′(x). Furthermore, we use u(x) = e−x and u′(x) = −e−x. Thus,
(3) is equivalent to

w′ +
(

− 2 +
x

x+ 1

)

w = ex(x+ 1). (4)

We solve the homogeneous counterpart of (4)

w′ +
(

− 2 +
x

x+ 1

)

w = 0

w′ =
x+ 2

x+ 1
w

x∫
w′(t)

w(t)
dt =

x∫
t+ 2

t+ 1
dt

⇒ wh(x) = ex(x+ 1)

Now, in order to solve the inhomogeneous equation (4), we use the variation of constants
method. We have to find c(x) s.t.

c′(x)wh(x) = ex(x+ 1),

i.e.,

c′(x)ex(x+ 1) = ex(x+ 1)

c′(x) = 1

⇒ c(x) = x
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Thus, a particular solution of the inhomogeneous equation is

wp(x) = c(x)wh(x) = xex(x+ 1)

and its general solution is

w(x) = Awh(x) + wp(x)

= Awh(x) + c(x)wh(x)

= ex(x2 +Ax+ x+A) (A = constant)

Going back to v, we get

v(x) =

x∫

w(t)dt

=

x∫

(t2 +At+ t+A)etdt

= ex
(
x2 +Ax− x+ 1) +B (B = constant)

Hence,

y(x) = v(x)u(x)

= x2 +Ax− x+ 1 +Be−x

We find the constants A and B from the initial conditions

1 = y(0) = 1 +B ⇒ B = 0

1 = y′(0) = A− 1−B ⇒ A = 2

Thus, the solution of the initial value problem is

y(x) = x2 + x+ 1.
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