



#### Institutsleitung

Prof. Dr.-Ing. J. Becker Prof. Dr.-Ing. E. Sax Prof. Dr. rer. nat. W. Stork

# Übung 2

Übung zu Informationstechnik II und Automatisierungstechnik – Nathalie Brenner





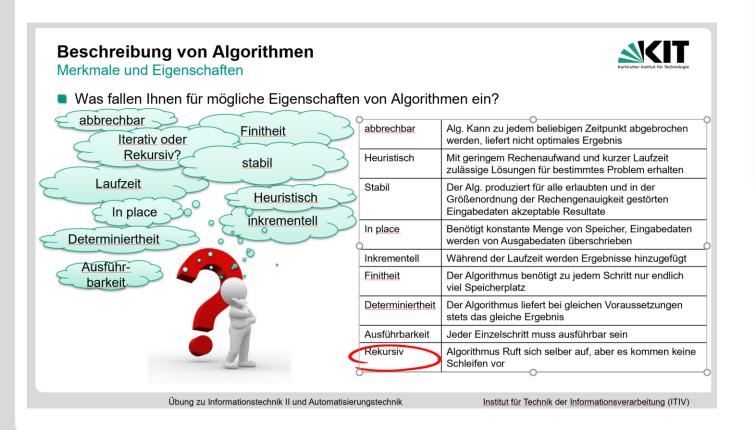
# **WIEDERHOLUNG ÜBUNG 1**



# Wiederholung Übung 1

Eigenschaften von Algorithmen

Algorithmen sind genau definierte Handlungsvorschriften zur Lösung eines Problems oder einer bestimmten Art von Problemen in endlich vielen Schritten





#### Laufzeitanalyse durch O-Notation

| Asymptotische<br>Laufzeit-<br>komplexität | Bezeichnung   | Erläuterung am Beispiel der Verdoppelung<br>der Problemgröße und typische Algorithmen<br>mit dieser Ordnung                                                                                                                            |
|-------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>O</i> (1)                              | konstant      | Laufzeit ist unabhängig von der Problemgröße,<br>optimaler Fall, der praktisch nicht auftritt                                                                                                                                          |
| O(log n)                                  | logarithmisch | Verdoppelung der Problemgröße bewirkt Anstieg der<br>Laufzeit um <i>log</i> 2, also um eine Konstante (um 1 für<br><i>logarithmus dualis</i> ), sehr günstig und daher erstrebens-<br>wert, z.B. <i>binäre Suche</i> (siehe Kapitel 6) |
| O(n)                                      | linear        | Verdoppelung der Problemgröße bewirkt Verdoppelung<br>der Laufzeit, immer noch zufrieden stellend,<br>z.B. <i>sequenzielle Suche</i> (siehe Kapitel 6)                                                                                 |
| O(n log n)                                | -             | Fast so gut wie linear, weil <i>log n</i> im Verhältnis zu <i>n</i><br>klein ist, z.B. gute Sortierverfahren wie <i>Quicksort</i><br>(siehe Kapitel 7)                                                                                 |
| $O(n^2)$                                  | quadratisch   | Verdoppelung der Problemgröße bewirkt Vervierfachung<br>der Laufzeit, ungünstig, z.B. schlechte Sortierverfahren<br>wie <i>Bubblesort</i> (siehe Kapitel 7)                                                                            |
| O(n <sup>3</sup> )                        | kubisch       | Verdoppelung der Problemgröße bewirkt Veracht-<br>fachung der Laufzeit, sehr unbefriedigend, z.B. einfache<br>Matrizenmultiplikation                                                                                                   |
| O(k")                                     | exponentiell  | Verdoppelung der Problemgröße bedeutet Quadrierung (weil $k^{2n} = (k^n)^2$ ) der Laufzeit, katastrophal, z.B. <i>Back tracking</i> - oder <i>Exhaustionsalgorithmen</i> (siehe Kapitel 9)                                             |

#### Rechengesetze zur O-Notation:

| CCIT | engeseize zur O-Notation.           |               |                                   |
|------|-------------------------------------|---------------|-----------------------------------|
|      | c * n                               | $\rightarrow$ | O(n)                              |
|      | O(c*n)                              | $\rightarrow$ | O(n)                              |
|      | c * O(n)                            | $\rightarrow$ | O(n)                              |
|      | O(O(n))                             | $\rightarrow$ | O(n)                              |
|      | $O(n_1) + O(n_2) + \cdots + O(n_x)$ | $\rightarrow$ | $O(\max(n_i))$                    |
|      | O(n) * O(m)                         | $\rightarrow$ | O(n * m)                          |
|      | m = O(n)                            | $\rightarrow$ | O(n+m) = O(n)                     |
|      |                                     |               |                                   |
|      | $n^a$                               | $\rightarrow$ | $O(n^b)$ , wenn a <b< td=""></b<> |
|      | $\log_a n$                          | $\rightarrow$ | $O(\log_b n)$ , $\forall a,b>1$   |



# **INHALT ÜBUNG 2**

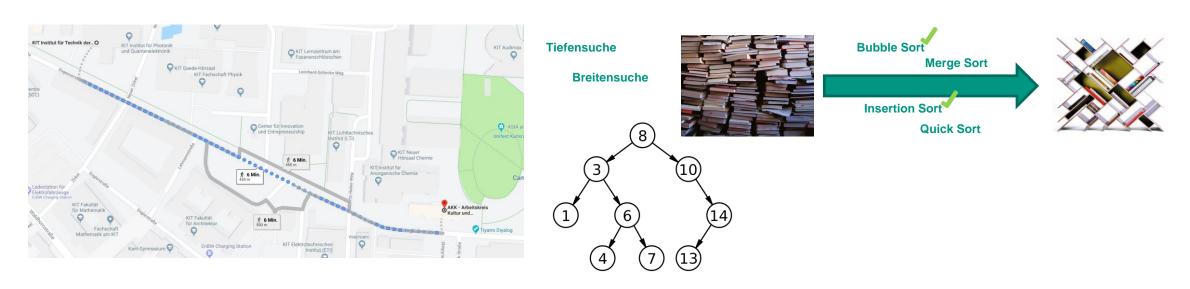


### Sortier-, Such- und Optimierungsalgorithmen



#### Wozu braucht man diese Algorithmen?

- 25% der Computer auf der Welt verbringen ihre Zeit mit Sortieren und Suchen!
- Durch einen sortierten Datenbestand kann eine Abfrage deutlich schneller bearbeitet werden!
  - Beim Einfügen der Daten
  - "Aufräumen" der bestehenden Daten
- Durch geeignete Suchalgorithmen kann beispielsweise der kürzeste Pfad gefunden werden "vom ITIV bis zum Kaffee"



# Ziele der heutigen Übung





Nach der heutigen Übung können Sie....

 ... bekannte Sortier- und Suchalgorithmen gegenüberstellen und demonstrieren

• ... verschiedene Sortieralgorithmen, sowie deren Merkmale, benennen

• ... verschiedene Sortieralgorithmen demonstrieren

• ... verschiedene Suchalgorithmen, sowie deren Merkmale, benennen

• ... verschiedene Suchalgorithmen demonstrieren



### **SORTIERALGORITHMEN**



Karlsruher Institut für Technologie

Wozu braucht man diese Algorithmen?

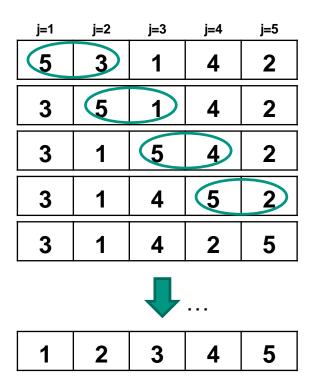
- Was wird alles sortiert?
- Was sortiert ein Computer?
- Warum werden Dinge sortiert?



### Wiederholung – Bubble Sort und Insertion Sort

#### Bubble Sort

```
A = [5, 3, 1, 4, 2]
for i = 1 to länge[A] - 1
  do for j = 1 to länge[A] - i
    do if A[j] > A[j+1]
    then vertausche A[j] mit A[j+1]
```





#### Insertion Sort

```
A = [5, 3, 1, 4, 2]
for j=2 to length(A) {
    do key= A[j];
    I = j-1;
    while i>0 and A[i]>key{
        do A[i+1] = A[i];
        I = i-1;
    }
    A[i+1] = key
```

```
for ( j = 2 to length(A) ) do

key = A[i]

i = j - 1

while ( i > 0 and A[i] > key ) do

A[i+1] = A[i]

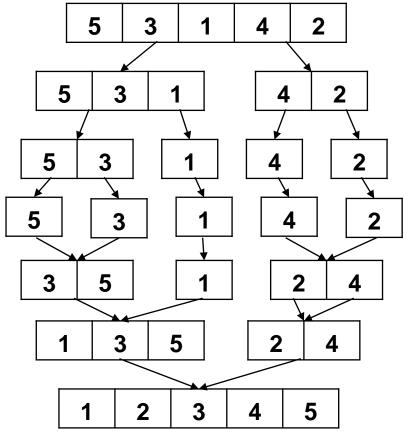
i = i - 1

A[i+1] = key
```

### Merge Sort

- Stabiler Sortieralgorithmus
- Besonders geeignet für verkettete Listen
- Prinzip: Teile und Herrsche/Divide and Conquer
  - Unsortierte Daten liegen als Liste vor
  - Zerlegung in immer kleinere Listen
  - Zusammenfügen durch Reißverschlussprinzip
  - Sortierte Daten liegen erneut als Liste vor



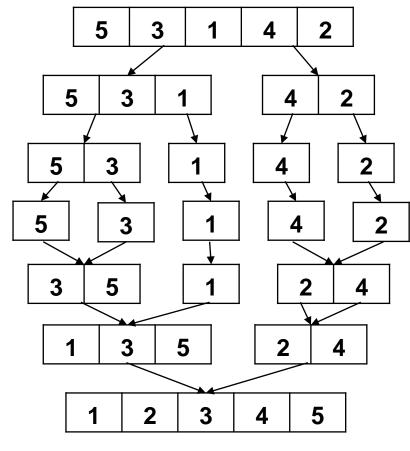


### Merge Sort

```
Mergesort(liste)
    if size(liste)>1
    then
      liste1=liste[erste Hälfte]
      liste2=liste[zweite Hälfte]
      liste1=mergesort(liste1)
      liste2=mergesort(liste2)
    return merge(liste1, liste2)
Merge(liste1, liste2)
    neueListe
    while liste1 und liste2 nicht leer
      do if liste1[1] > liste2[1]
       then liste1[1] zu neueListe & liste1[1] löschen
       else liste2[1] zu neueListe & liste2[1] löschen
```

return neueListe





# Karlsruher Institut für Technologie

#### **Quick Sort**

- Schneller, rekursiver, nicht-stabiler Sortieralgorithmus nach dem Prinzip "Teile und Herrsche"
- Ca. 1960 von C. Antony R. Hoare in seiner Grundform entwickelt und seitdem von vielen Forschern verbessert
- Verfügt über eine sehr kurze innere Schleife (was die Ausführungsgeschwindigkeit stark erhöht)
- Kommt ohne zusätzlichen Speicherplatz aus (abgesehen von dem Platz auf dem Aufruf-Stack für die Rekursion)
- Im Mittel schnellster Sortieralgorithmus

# Karlsruher Institut für Technologie

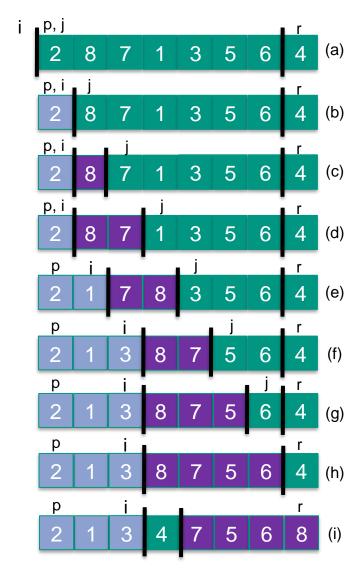
#### **Quick Sort**

- Drei Schritte für das Sortieren eines Feldes A[p ... r]:
  - a) <u>Teile</u>: Zerlege das Feld **A[p..r]** in zwei (möglicherweise leere) Teilfelder **A[p..q-1]** und **A[q+1..r]**. Dabei soll jedes Element von **A[p..q-1]** kleiner oder gleich **A[q]** und jedes Element von **A[q+1..r]** größer als **A[q]** sein. **A[q]** ist dabei ein beliebiges Element des Feldes. (Somit sind alle Werte von **A[p..q-1]** auch kleiner wie die Werte in **A[q+1..r]**.)
  - b) <u>Beherrsche</u>: Sortiere die beiden Teilfelder **A[p..q-1]** und **A[q+1..r]** wieder durch rekursiven Aufruf von QuickSort (Beginn wieder beim Teilen), wenn die Teilfelder mehr als ein Element haben.
  - c) <u>Verbinde</u>: Da die Teilfelder in-place sortiert werden (in Feld selbst), ist keine Arbeit erforderlich, um sie zu verbinden. Das gesamte Feld **A[p..r]** ist nun sortiert.

Quick Sort - Pseudocode

```
Quicksort( A, 1, länge[A] )
Quicksort(A, p, r)
      if p < r
      then q = Partition(A, p, r)
        Quicksort( A, p, q - 1 )
        Quicksort( A, q + 1, r)
Partition(A, p, r)
      x = A[r]
      i = p - 1
      for j = p to r - 1
      do if A[j] <= x</pre>
        then i = i + 1
        vertausche A[i] mit A[j]
      vertausche A[i+1] mit A[r]
      return i+1
```





Quick Sort – leicht erklärt





### Möglichkeiten zur Anwendung von Sortieralgorithmen



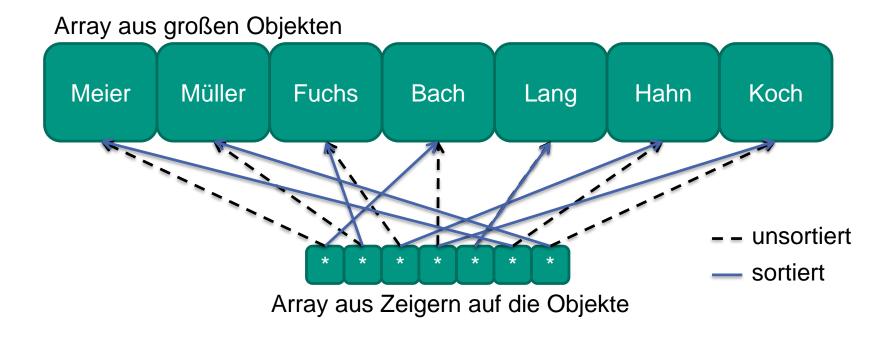
### Sortieren und Zeiger

- Problemstellung
  - Wie kann ich große Objekte effizient und schnell sortieren?
  - Große Objekte = viele Attribute, wobei nach einem bestimmten Attribut aufsteigend oder absteigend sortiert werden soll
- Lösung: Sortieren von Zeigern auf Objekte
  - Man erstellt ein Array aus Zeigern, welche auf alle Objekte zeigen und sortiert nur diese Zeiger
- Vorteile
  - Wesentlich schnelleres sortieren bei großen Objekten, da nur Zeiger verschoben werden
  - Mit konstanten Zeiger können die Objekte vor einer ungewollten Veränderung geschützt werden (const int\* arr)
- Nachteile
  - Es wird zusätzlicher Speicherplatz für die Zeiger benötigt
  - Komplexer in der Programmierung

### Sortieren und Zeiger

### **Prinzip**





- Nur Veränderung der Zeiger, anstatt die großen Objekte im Array zu verschieben
- Für einzelne dynamisch erzeugte Objekte auf dem Heap ist kein anderes Sortierverfahren anwendbar

### Sortieren und Zeiger

### Beispiel

```
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
class NamenSortieren {
private:
  string* sortNamen[7];
  int laenge;
public:
  void sortieren();
  void erzeugen();
  void ausgeben();
};
```

```
Karlsruher Institut für Technologie
```

```
void NamenSortieren::erzeugen() {
      sortNamen[0] = new string( "Meier" );
      sortNamen[1] = new string( "Mueller"
       );
      sortNamen[2] = new string( "Fuchs" );
      sortNamen[3] = new string( "Bach" );
      sortNamen[4] = new string( "Lang" );
      sortNamen[5] = new string( "Hahn" );
      sortNamen[6] = new string( "Koch" );
      laenge = 7;
string* sortNamen[7];
                             ➤ Müller
                    Meier
                                     Lang
                  Fuchs Hahn
       3
       4
                                   Koch
                         Bach
       5
                                          Heap
```

### Sortieren und Zeiger



#### Beispiel – Sortieren dynamischer Objekte

```
void NamenSortieren::sortieren() {
                                                                     BubbleSort-Algorithmus
  string* temp = NULL;
                                                                     zum Sortieren
  for( int i = 0; i < laenge - 1; i++ ) {</pre>
                                                                     Vergleich des Inhalts, worauf das
    for( int j = laenge - 1; j >= i + 1; j-- )
                                                                     Element im Zeigerarray zeigt
       if( *sortNamen[j] < *sortNamen[j-1] ) {</pre>
         temp = sortNamen[j];
                                                                     Nur verändern der Zeiger im
         sortNamen[j] = sortNamen[j-1];
                                                                     Zeigerarray (Adressen werden
         sortNamen[j-1] = temp;
                                                                     vertauscht)
                                                                     Linksbündig ausgeben
void NamenSortieren::ausgeben() {
                                                                     Ausgabe der Namen über
  cout << left;</pre>
                                                                     Dereferenzierung
  for( int i = 0; i < laenge; i++ )</pre>
    cout << setw( 10 ) << *sortNamen[i];</pre>
                                                   C:\WINDOWS\system32\cmd.exe
                                                                   Fuchs
                                                                                            Hahn
  cout << endl;</pre>
                                                                                    Lang
                                                                                            Meier
                                                    rücken Sie eine beliebige Taste . .
```

#### Zwischenübung

Gegeben sind folgende 6 Buchstaben





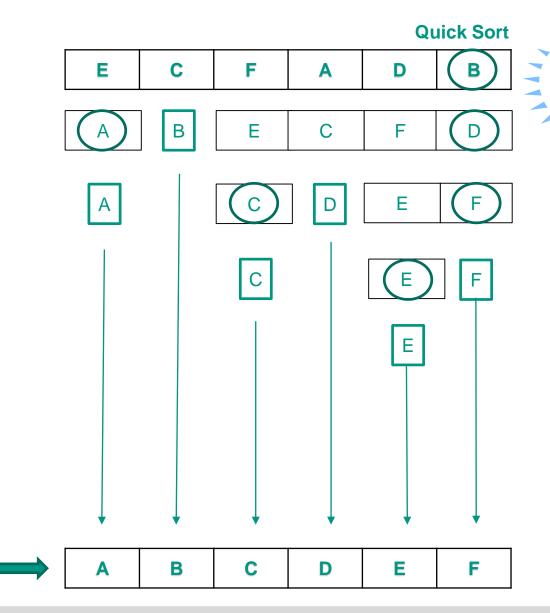
- Aufgabe:
  - Buchstaben mit dem Merge/Quick Sort alphabetisch sortieren. Dabei jeden Zwischenschritt/Iterationsschritt angeben
- Lösungsziel:

| A B | С | D | Е | F |
|-----|---|---|---|---|
|-----|---|---|---|---|

Zwischenübung - Lsg

#### **Bubble Sort**

| E | C  | F | Α | D   | В |
|---|----|---|---|-----|---|
| С | E  | F | Α | D   | В |
| С | E  | F | A | D   | В |
| С | E  | Α | F | D   | В |
| С | Е  | Α | D | II. | В |
| C | E  | Α | D | В   | F |
| С | E  | A | D | В   | F |
| С | Α  | E | D | В   | F |
| С | Α  | D | Ш | В   | F |
| C | A  | D | В | E   | F |
| Α | CO | D | В | Е   | F |
| Α | С  | D | В | E   | F |
| A | C  | В | D | E   | F |
| Α | C  | В | D | Е   | F |
| A | В  | С | D | Е   | F |





- Sortieralgorithmen
  - Bubble Sort
  - Insertion Sort
  - Merge Sort
  - Quick Sort
- Anwendung von Sortieralgorithmen
  - Sortieren und Zeiger





### **ALGORITHMEN AUF GRAPHEN**



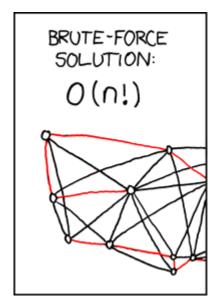
### Suchalgorithmen und Laufzeit

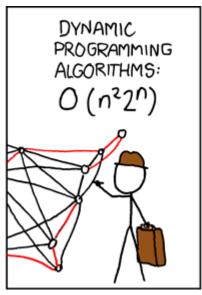


#### **Definition:**

"Ein Suchalgorithmus sucht in einer Gesamtmenge von Daten (Suchraum) nach Mustern oder Objekten mit bestimmten Eigenschaften"

- Graphen werden in verschiedenen Gebieten eingesetzt
  - Routenplanung
  - Kommunikationsnetwerke
  - Gantt-Diagramme
  - Hierarchische Strukturen
- Algorithmen auf Graphen können unterschiedliche Informationsgewinne bedeuten







#### Lineare Suche

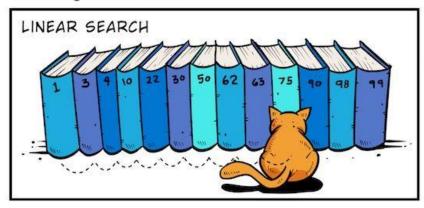
- Element in Liste suchen
  - Elemente nach Index in aufsteigender Reihe nach gesuchter Stelle "Suche Stelle, an der Element "2" ist"



```
int lineare_suche( list, key)
  int I;
  for (i=0;i<lange(list); i++){
    if (list(i)==key) }
      return=I;
  end</pre>
```



### Finding Book #75



#### Lineare Suche



Elemente nach Index in aufsteigender Reihe nach gesuchter Stelle "Suche Stelle, an der Element "2" ist"

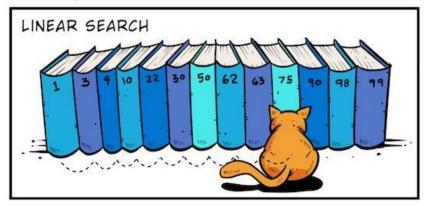


- Vorgehen: Sortieren!
  - Elemente nach Index in aufsteigender Reihe nach gesuchter Stelle, Abbruch wenn x > gesuchtes Element "Suche Stelle, an der Element "2" ist"





### Finding Book #75



Das muss doch auch effizienter gehen?!

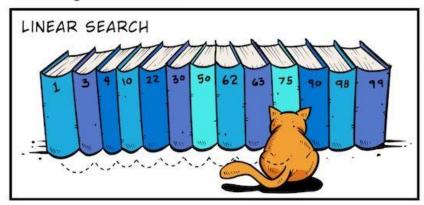
#### Binärsuche

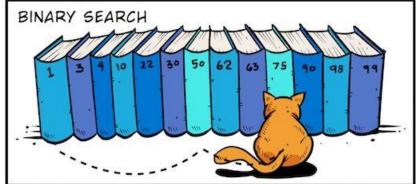
- Vorgehen:
  - Suche beginnt immer in der Mitte des aktuell zu untersuchenden Arrays/Liste/Intervalls
  - Der Suchraum wird mit jeder Iteration halbiert
- Die Binärsuche benötigt von Anfang an sortierte Elemente

```
int binarySearch( list, key, bottom, top )
  center = ( bottom + top )/2
  if list[center] == key {
    return center }
  elseif top - bottom > 0 {
    if key < list[center]
      return binarySearch( list, key, bottom, center )
    else
    return binarySearch( list, key, center + 1, top ) }</pre>
```

# Karlsruher Institut für Technologie

### Finding Book #75



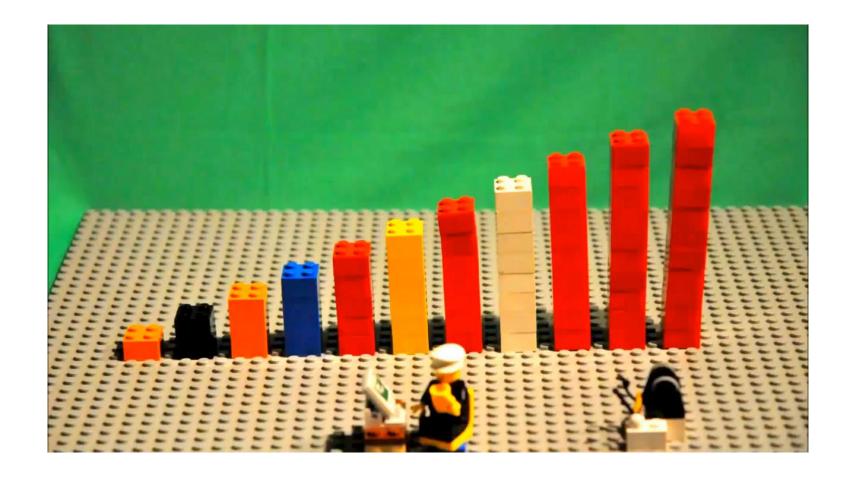


www.petsintech.com

illustrator: Don Suratos

### Binärsuche





### **Algorithmen auf Graphen**

#### Breitensuche



- Verfahren zum durchlaufen der einzelnen Knoten in einem Graphen
  - Durchläuft alle Knoten, welche mit dem aktuellen (z.B. Start-)Knoten verbunden sind
  - Im Gegensatz dazu durchläuft die Tiefensuche einen Pfad bis zu seinem Endknoten, bevor er zurückkehrt und den nächsten unbesuchten Pfad abläuft
- Ergebnis der Breitensuche ist ein Breitensuchbaum
  - Der Breitensuchbaum ist ein gerichteter Graph

```
BreadthFirstSearch( G, s )
  for alle Knoten u in G
  do farbe[u] = weiss
     d[u] = \infty
    vater[u] = NIL
  create queue Q
  farbe[s] = grau
  d[s] = 0
  enqueue(Q, s)
  while Q not empty
  do u = dequeue(Q)
   for alle Knoten v aus Adj[u]
    do if farbe[v] == weiss
       then farbe[v] = grau
           d[v] = d[u] + 1
           vater[v] = u
           enqueue(Q, v)
    farbe[u] = dunkelgrün
```

```
// Initialisiere alle Knoten im Graph
// Alle Knoten wurden noch nicht gefunden
// Alle Knoten haben noch keinen Abstand
// Alle Knoten haben noch keinen Vater
// Erzeuge eine Warteschlange Q
// Starte mit Startknoten s
// Abstand zum Startknoten d
// Hänge s an die Warteschlange
// Solange noch Knoten abgearbeitet werden
// hole den nächsten Knoten u
// Für alle zu u adjazente Knoten v
// prüfe ob v schon gefunden wurde
// wenn nicht, dann setze v auf gefunden
// Weise Knoten v seinen Abstand zu
// Der Vater von Knoten v ist der Knoten u
// Merke v für die weitere Verarbeitung
// Markiere Knoten u als abgearbeitet
```

### Algorithmen auf Graphen





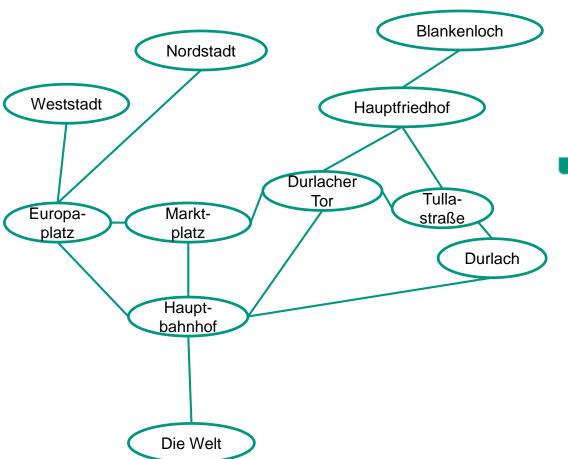
Gesucht: Breitensuchbaum mit Start Hauptfriedhof



### **Breitensuche**

### Zwischenübung



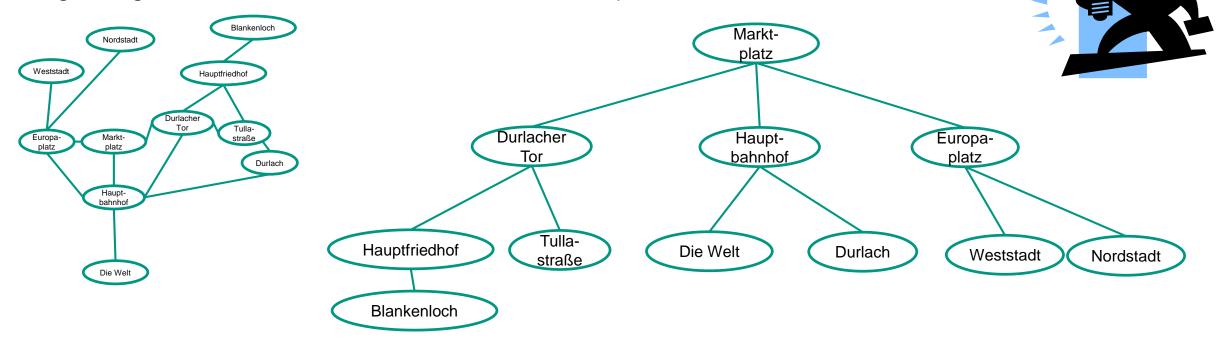


Stellen Sie den zugehörigen Breitensuchbaum auf mit Start am Marktplatz

### **Breitensuche**

Zwischenübung - Lsg

zugehöriger Breitensuchbaum, mit Start am Marktplatz

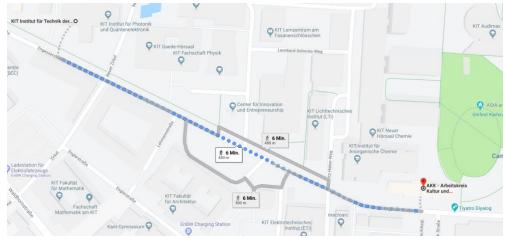


### Suchalgorithmen – kürzester Pfad

#### Dijkstra Algorithmus



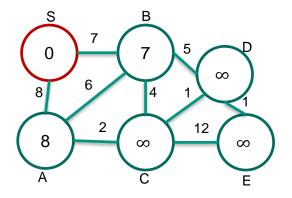
- Ziel: kürzester Weg zwischen Start- und Zielknoten finden
  - Kürzester weg (Ablauf)
  - Kleinste Wegkosten
- Vorgehen:
  - Initialisiere die Distanz im Startknoten mit 0 und in allen anderen Knoten mit ∞ (oder hier ⊥).
  - Solange es noch unbesuchte Knoten gibt, wähle darunter denjenigen mit minimaler Distanz aus und speichere, dass dieser Knoten schon besucht wurde.
  - Berechne für alle noch unbesuchten Nachbarknoten die Summe des jeweiligen Kantengewichtes und der Distanz zum aktuellen Knoten.
  - Ist dieser Wert für einen Knoten kleiner als die dort gespeicherte Distanz, aktualisiere sie und setze den aktuellen Knoten als Vorgänger.
    - Dieser Schritt wird auch als Update oder Relaxieren bezeichnet.
  - Hier: Netzwerk mit Knoten A, B, C, D, E, F, G und den jeweiligen Verbindungsgewichten

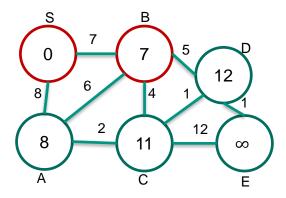


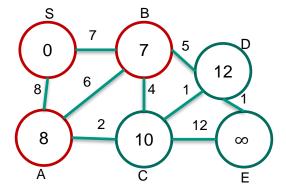
### Suchalgorithmen – kürzester Pfad

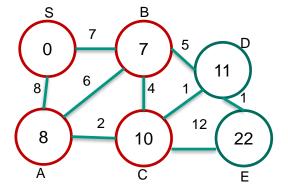
### Dijkstra Algorithmus

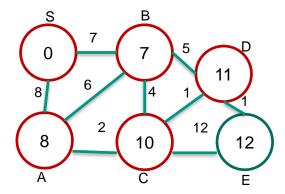


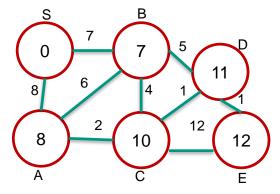












Kürzester Pfad von S nach E: S→A→C→D→E



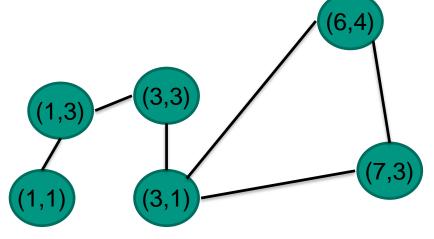
- Suchalgorithmen
  - Lineare Suche
  - Binäre Suche
- Algorithmen auf Graphen
  - Breitensuche
  - Dijkstra



## Zwischenübung

Graphen und Heuristik

Gegeben:Graph G mit Position (x,y) für jeden Knoten





Aufgabe:

Berechnung des Heuristikwerts bezogen auf Startknoten (1,3)

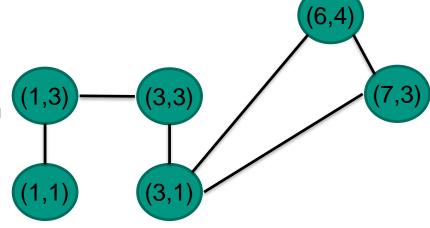
Heuristikfunktion h für zwei Knoten i und j: (auch bekannt als Manhatten-Distanz-Funktion)

$$h(i,j) = ||x_i - x_j|| + ||y_i - y_j||$$

## Zwischenübung

Graphen und Heuristik -Lsg

Gegeben: Graph G mit Position (x,y) für jeden Knoten





#### Aufgabe:

Berechnung des Heuristikwerts bezogen auf Startknoten (1,3)

Heuristikfunktion h für zwei Knoten i und j: (auch bekannt als Manhatten-Distanz-Funktion)

$$h(i,j) = ||x_i - x_j|| + ||y_i - y_j||$$

| Zielknoten | Heuristikwert (bezogen auf (1,3)) |                                       |  |
|------------|-----------------------------------|---------------------------------------|--|
| (1,1)      | 2 —                               | h =   1 - 1   +   3 - 1   = 0 + 2 = 2 |  |
| (3,3)      | 2 —                               | h =   1 - 3   +   3 - 3   = 2 + 0 = 2 |  |
| (3,1)      | 4                                 |                                       |  |
| (6,4)      | 6                                 |                                       |  |
| (7,3)      | 6 —                               | h =   1 - 7   +   3 - 3   = 6 + 0 = 6 |  |

## Ziele der heutigen Übung





Nach der heutigen Übung können Sie....

... bekannte Sortier- und Suchalgorithmen gegenüberstellen und demonstrieren

- ... verschiedene Sortieralgorithmen, sowie deren Merkmale benennen
- ... verschiedene Sortieralgorithmen demonstrieren
- ... verschiedene Suchalgorithmen, sowie deren Merkmale benennen
- ... verschiedene Suchalgorithmen demonstrieren