

Institutsleitung

Prof. Dr.-Ing. J. Becker Prof. Dr.-Ing. E. Sax Prof. Dr. rer. nat. W. Stork

Übung 6

Übung zu Informationstechnik II und Automatisierungstechnik – Nathalie Brenner

ORGANISTAROISCHES KLAUSUR SS2020

Organisatorisches

Informationen zur Klausur SS2020

Inhalt: Vorlesung und Übung

Termin: Freitag: 31.07 2020 09:00 bis 11:00 Uhr

Anmeldefrist: 24.07.2020 23:59

Abmeldefrist: 30.07.2020 23:59

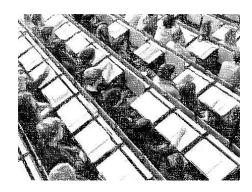
Dauer: 2 Stunden

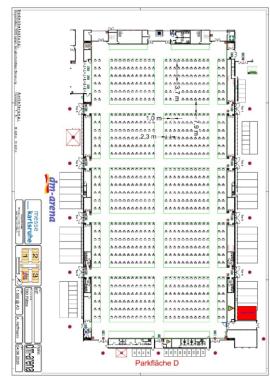
Einlass: ab 30 Minuten vor Prüfungsbeginn (*Änderungen vorbehalten)*

Ort: DM-Arena, Messehalle 1, Rheinstetten

Hilfsmittel: 1x A4 Blatt (2x A4 Seite, handschriftlich, lesbar ohne Hilfsmittel)

Genaue Informationen zum Ablauf der Prüfung werden bis zum 24.07.2020 bekannt gegeben. Bitte sehen Sie bis dahin von weiteren Nachfragen ab!





Organisatorisches

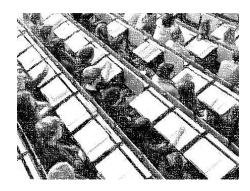
Informationen zur Klausur SS2020

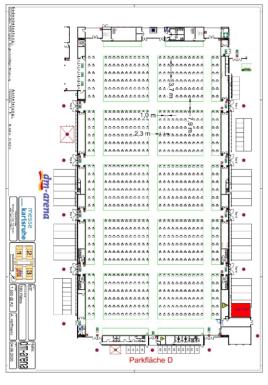
- Mitzubringen:
 - KIT-card oder Lichtbildausweis
 - Schreibzeug
 - Unterschriebene Erklärung

"Erklärung über den fehlenden Verdacht einer Infektion mit dem Coronavirus" (Verfügbar auf Ilias ab 24.07.2020

oder unter https://intranet.kit.edu/downloads/erklaerung-praesenzpruefung.pdf)

Weitere Informationen werden direkt nach Erhalt in Ilias veröffentlicht. Wir bitten Sie sich regelmäßig nach aktualisierten Informationen zu erkundigen!





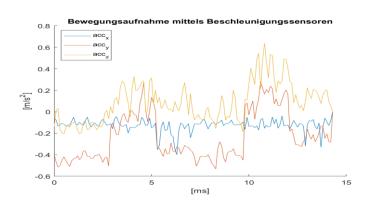
Organisatorisches zur Klausur

WIEDERHOLUNG ÜBUNG 5

Wiederholung Übung 5

Datenaufbereitung

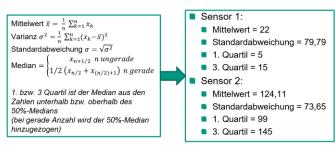
Datenbereinigung



Datenaufbereitung – Anomaliedetektion über Anomaliemaß Zwischenübung

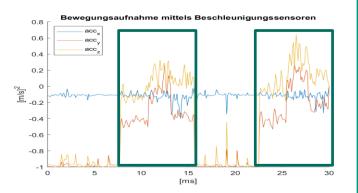
- Führen Sie eine Anomaliedetektion von Sensor 1 und 2 über die Standardabweichung und über die Whisker eines Boxplots durch:
 - Als Akzeptanzbereich für die Standardabweichung wurde 1,9σ festgelegt
 - Als Whisker Grenze wurde das 1,5 Fache des Interquartilsabstands (IQR) festgelegt

Zeit (h).	Sensor 1	Sensor 2
3	13	125
6	8	145
9	255	99
11	n/a	278
15	15	133
19	54	155
21	9	n/a
24	5	136
1534	-13	-12
1537	-6	58



Zeitfensterauswahl

- Tag/Nacht?
- Sommer/Winter
- Event getriggert



- Reduktion der Daten auf relevante Situationen, um
 - invalide Ergebnisse zu vermeiden (Zusammenhang anderer Situationen)
 - Datenmenge für weitere Bearbeitung zu reduzieren
- Wiederfindung ähnlicher Situationen / Signalverläufe in Daten
 - Herausforderung: Streckung oder Stauchung gleicher Situationen

Wiederholung Übung 5

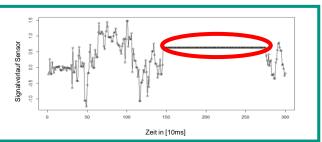
Datenaufbereitung

Datenmanipulation

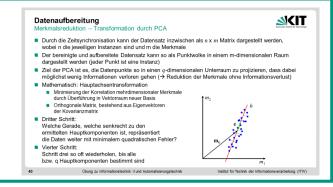
- 1. Umgang mit Ausreißern
- 2. Konvertierung der Daten nach Use Case
- 3. Umgang mit fehlerhaften Werten
- 4. Qualitätsverbesserung
- Merkmalsreduktion

Qualitätsverbesserung

- Entfernung fehlerhafter Messungen
- Glättung von Messwerten (durch Interploation)



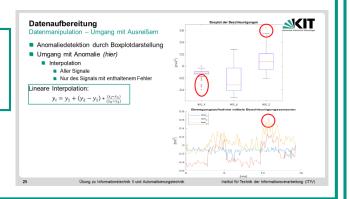
Merkmalsreduktion durch PCA



Umgang mit Ausreißern

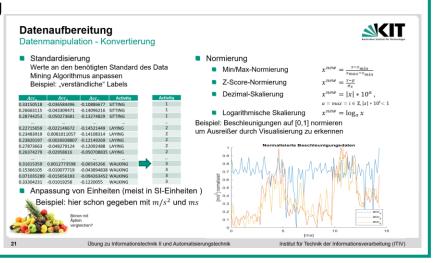
Lineare Interpolation:

$$y_i = y_1 + (y_2 - y_1) * \frac{(x_i - x_1)}{(x_2 - x_1)}$$



Konvertierung

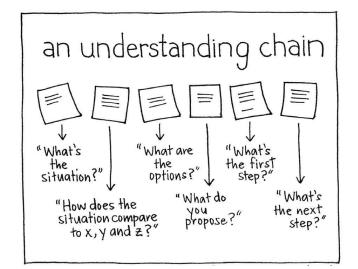
- Standardisierung
- Normierung
- Anpassung von Einheiten



INHALT ÜBUNG 6

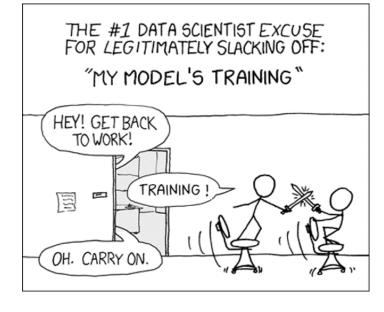
Modeling

Data Understanding



Data Preparation

Modeling



Ziele der heutigen Übung

Nach der heutigen Übung können Sie....

...Ansätze zur Verwaltung und Analyse großer Datenbestände hinsichtlich ihrer Anwendbarkeit und Wirksamkeit einschätzen

... Merkmale und Eigenschaften von selbstlernenden Algorithmen benennen und abgrenzen

... Methoden des maschinellen Lernens einordnen, beschreiben und bewerten

... Modelle berechnen unter Anwendung überwachter maschineller Lernmethoden

• ... Verfahren zur Auswahl einer geeigneter Methode beschreiben und anwenden

MODELING EINFÜHRUNG IN MASCHINELLES LERNEN

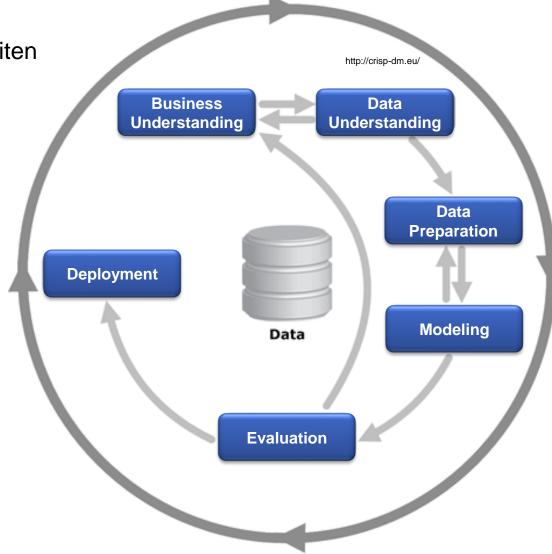
Cross Industry Standard Process for Data Mining (CRISP-DM)

Modellbildung

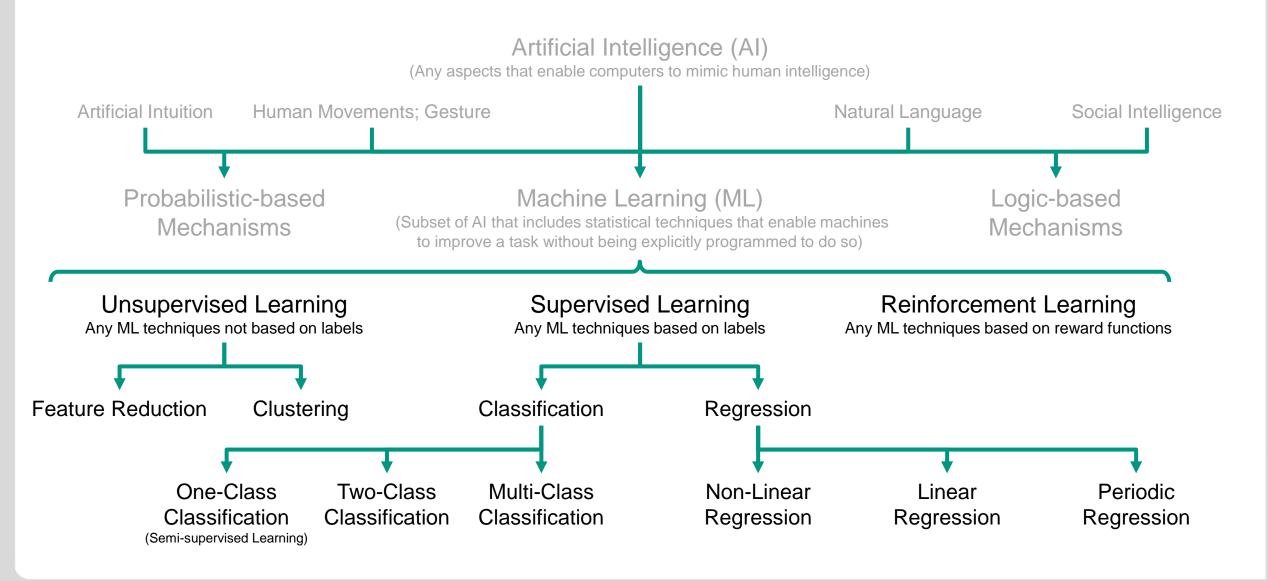
Modeling

 Suche nach Modellen, Mustern oder Gesetzmäßigkeiten in den vorliegenden Daten

- Group by Learning Style Algorithmus Modeling - Un- vs Supervised Selektion **Technique** - Reinforcement Group by Similarity - Regression, Neighbor, Clustering, Decision Tree, NN, Bayes **Testdesign** - Splitting - ROC - Test, Train, Validate - Confusion Matrix **Build &** - Cross Validation Assess - Precision/Recall Model - AUC



Modelbildung – Übersicht über Verfahren



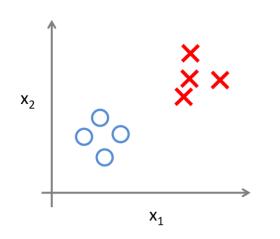
Modeling – Einteilung der Algorithmen

Group by Learning Style

Supervised Learning

- gelabelte Daten
- Lernen/Vorhersagen von Output aus Input-Daten
- Herausforderung:
 - extrapolieren
 - generalisieren
- Beispiele
 - Klassifizierung
 - Regression

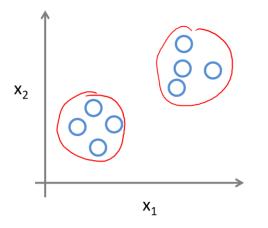
Supervised Learning



Unsupervised Learning

- ungelabelte Daten
- Auffinden von versteckten Strukturen in Daten
- Herausforderung:
 - Subjektiver als SL
 - Validierung
- Beispiele
 - Clustering
 - Dimensionsreduktion

Unsupervised Learning



SUPERVISED LEARNING REGRESSION

Regression und Klassifikation

Gemeinsamkeiten und Unterschiede

Überwachtes Lernen

- Bei Trainingsdaten ist das Vorhersageattribut bekannt
- Zielgröße neuer Datensätze werden auf Basis des gelernten Modells vorhergesagt

Regressionsprobleme

- Idee
 - Bestimmung eines unbekannten numerischen Attributwertes (ordinal oder kategorisch durch Schwellwertsetzung)
 - Unter Benutzung beliebiger Attributwerte
- Beispiele:
 - Vorhersage von Kosten, Aufwand, etc.
 - Vorhersage von Kundenverhalten (Kündigungszeitpunkt)
 - Vorhersage zu Verkaufszahlen
 - uvm

Klassifikationsprobleme

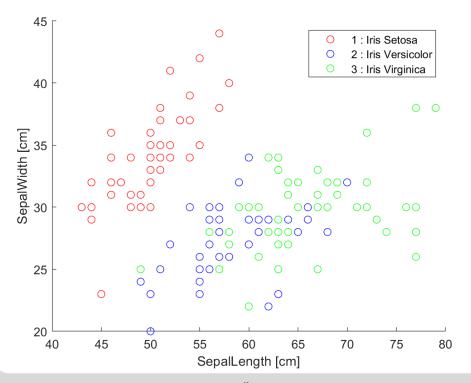
- Idee
 - Bestimmung eines unbekannten kategorischen Attributwertes (ordinal mit Einschränkungen)
 - Unter Benutzung beliebiger Attributwerte
- Beispiele:
 - Klassifikation von Spam
 - Vorhersage von Kundenverhalten (Kündigung)
 - Vorhersage von Kreditwürdigkeit
 - uvm

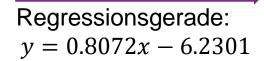
Karlsruher Institut für Technologie

Berechnung der Linearen Regression

Regressionsgerade
$$y = \frac{S_{xy}}{S_{xx}}x + \bar{y} - \frac{S_{xy}}{S_{xx}}\bar{x}$$

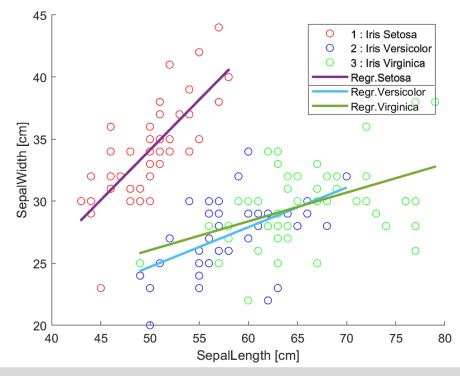
 $S_{xx} = (x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + ... + (x_n - \bar{x})^2$
 $S_{xy} = ((x_1 - \bar{x}) * (y_1 - \bar{y})) + ((x_2 - \bar{x}) * (y_2 - \bar{y})) + ... + ((x_n - \bar{x}) * (y_n - \bar{y}))$





Regressionsgerade: y = 0.3197x + 8.7215

Regressionsgerade: y = 0.2319x + 14.4631

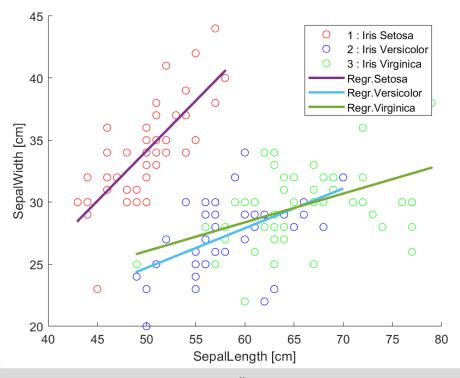


Quadratische Regression

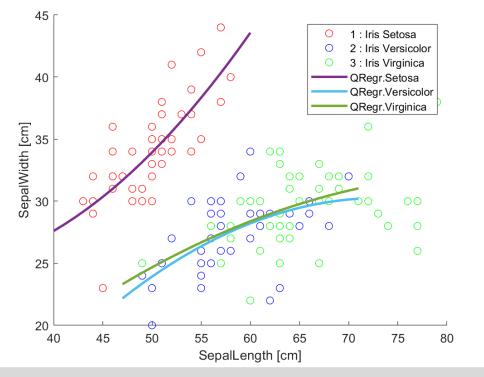
Methodenauswahl

Es sei ein neuer Datenpunkt für die "Iris-Analyse" gegeben Wie wird nun entschieden, welche Methode sich am besten eignet um eine Vorhersage zu treffen, zu welcher Klasse der neue Punkt gehört?

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	51	35	14	2	Iris-setosa
2	49	30	14	2	Iris-setosa
3	47	32	13	2	Iris-setosa
4	46	31	15	2	Iris-setosa
5	50	36	14	2	Iris-setosa
51	70	32	47	14	Iris-versicolor
52	64	32	45	15	Iris-versicolor
53	69	31	49	15	Iris-versicolor
54	55	23	40	13	Iris-versicolor
55	65	28	46	15	Iris-versicolor
152	52	50	30	6	?????



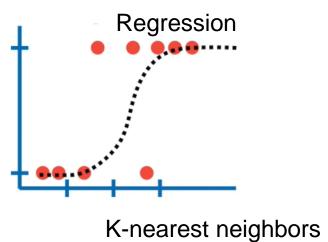
k-fold Cross Validation



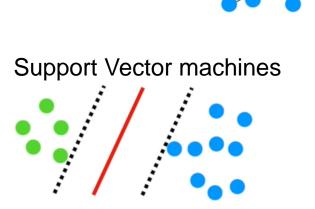
Supervised Learning

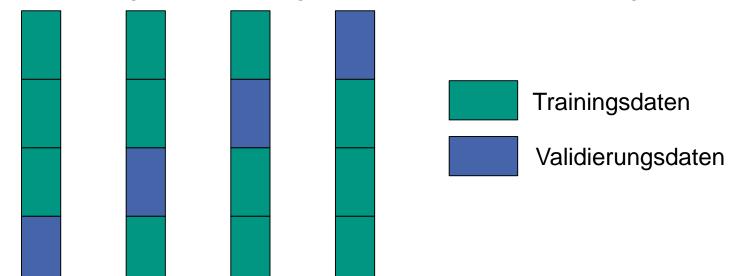
Karlsruher Institut für Technologie

Methodenauswahl – k-fold Cross Validation



- Kompletten Datensatz teilen in 70% Trainings- und 30% Testdaten
 - 1. Die Trainingsdaten werden in k Teile unterteilt
 - 2. Auf Basis von k-1 Teilen wird das Modell berechnet und im Anschluss mit dem verbleibenden Teil validiert.
 - 3. Wiederholen bis alle Teile einmalig der Validierung dienten
 - 4. MSE berechnen und merken
 - 5. Wiederholung der Punkte 1.-4. für jede Methode
 - 6. Auswahl der Methode mit dem geringsten MSE



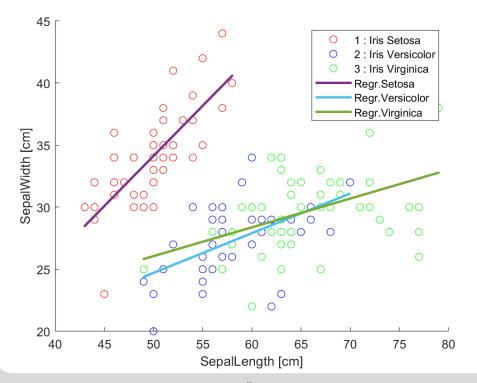


Supervised Learning

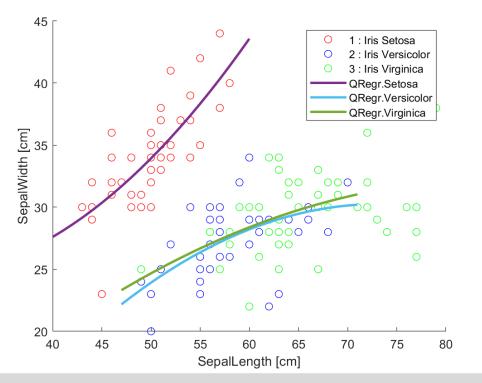
Mean Squared E	rror N
-----------------------	--------

$$\mathsf{MSE} = \frac{1}{n} \sum (y(x) - y^*(x))^2$$

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	51	35	14	2	Iris-setosa
2	49	30	14	2	Iris-setosa
3	47	32	13	2	Iris-setosa
4	46	31	15	2	Iris-setosa
5	50	36	14	2	Iris-setosa
51	70	32	47	14	Iris-versicolor
52	64	32	45	15	Iris-versicolor
53	69	31	49	15	Iris-versicolor
54	55	23	40	13	Iris-versicolor
55	65	28	46	15	Iris-versicolor
152	52	50	30	6	?????



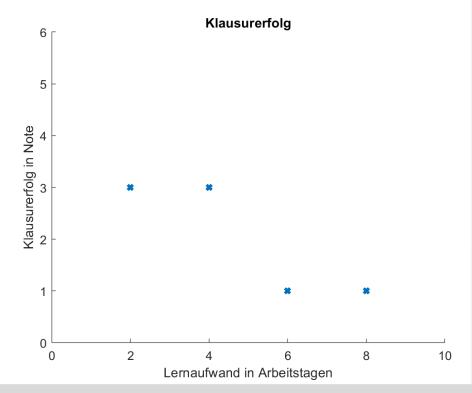
<u>Iris Setosa</u>								
Regr.art	MSE							
L. Regr	6.5554							
Q. Regr.	6.2262							



Zwischenübung

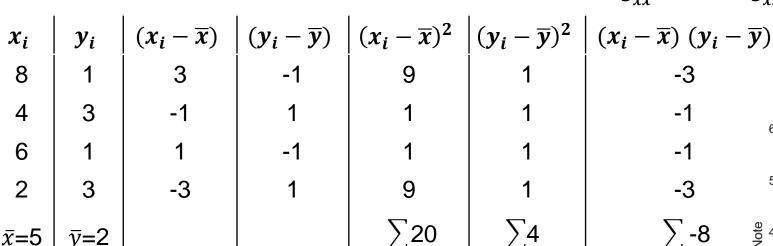
Es ist der Lernaufwand x_i von vier Personen, sowie der Klausurerfolg y_i (in Note) gegeben. Berechnen Sie die Regressionsgerade $\mathbf{y} = \frac{s_{xy}}{s_{xx}} \mathbf{x} + \overline{\mathbf{y}} - \frac{s_{xy}}{s_{xx}} \overline{\mathbf{x}}$

x_i	y_i
8	1
4	3
6	1
2	3
\bar{x} =5	<i>y</i> =2



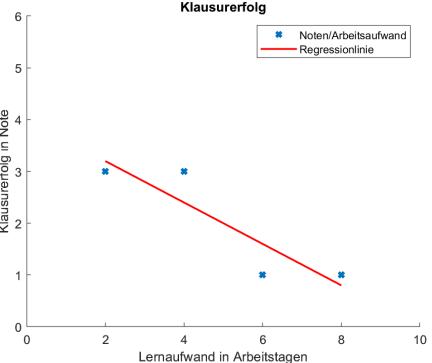
Zwischenübung - Lsg

Es ist der Lernaufwand x_i von vier Personen, sowie der Klausurerfolg y_i (in Note) gegeben. Berechnen Sie die Regressionsgerade $\mathbf{y} = \frac{s_{xy}}{s}x + \overline{y} - \frac{s_{xy}}{s}\overline{x}$



$$y_{regr} = \frac{\sum (x_{i} - \bar{x}) * (y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}} x + \bar{y} - \frac{\sum (x_{i} - \bar{x}) * (y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}} \bar{x}$$
$$y_{regr} = -\frac{2}{5} x + 4$$

MSE =
$$1/n \sum (y_{regr}(x_i) - y_i)^2$$
 (hier: MSE=0.2)



- Supervised Learing
 - Regression

SUPERVISED LEARNING KLASSIFIKATION

Regression und Klassifikation

Gemeinsamkeiten und Unterschiede

Überwachtes Lernen

- Bei Trainingsdaten ist das Vorhersageattribut bekannt
- Zielgröße neuer Datensätze werden auf Basis des gelernten Modells vorhergesagt

Regressionsprobleme

- Idee
 - Bestimmung eines unbekannten numerischen Attributwertes (ordinal oder kategorisch durch Schwellwertsetzung)
 - Unter Benutzung beliebiger Attributwerte
- Beispiele:
 - Vorhersage von Kosten, Aufwand, etc.
 - Vorhersage von Kundenverhalten (Kündigungszeitpunkt)
 - Vorhersage zu Verkaufszahlen
 - uvm

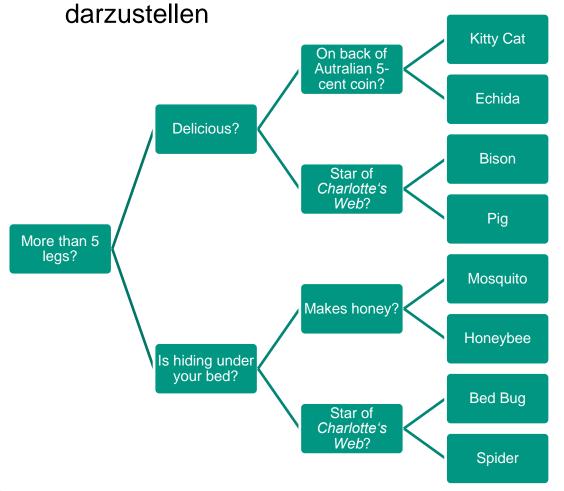
Klassifikationsprobleme

- Idee
 - Bestimmung eines unbekannten kategorischen Attributwertes (ordinal mit Einschränkungen)
 - Unter Benutzung beliebiger Attributwerte
- Beispiele:
 - Klassifikation von Spam
 - Vorhersage von Kundenverhalten (Kündigung)
 - Vorhersage von Kreditwürdigkeit
 - uvm

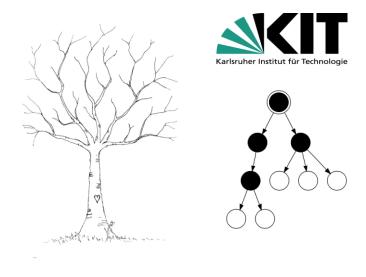
Klassifikation

Decision Tree

Ein Decision Tree verwendet eine Baumstruktur, um eine Reihe möglicher Entscheidungspfade und das Ergebnis für jeden Pfad







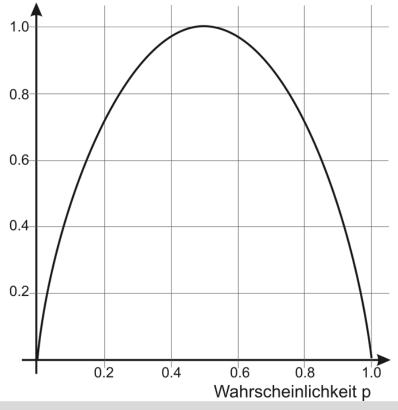
Klassifikation

Karlsruher Institut für Technologie

Decision Tree - Entwurf

- Für den Entwurf des Decision Tree muss entschieden werden
 - Welche "Fragen" werden an die Daten gestellt (Auswahl der genutzten Attribute)
 - In welcher Reihenfolge werden die "Fragen" an die Daten gestellt (Reihenfolge der Attributsabfrage)
- Abhilfe schafft Entropie
 - Entropie H(S): Aussage über Informationsgehalt $H(S) = -p_1 \log p_1 p_2 \log p_2 \cdots p_n \log p_n$ mit p_i als Wahrscheinlich des Ereignis i
 - Je eher p_i gegen 0 oder 1 geht desto $H(S_i) \rightarrow 0$

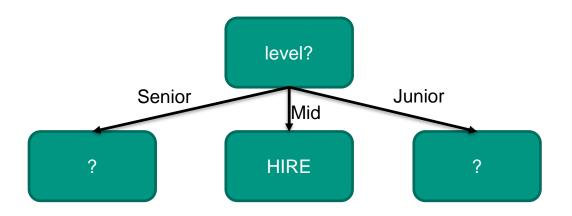
Entropie



Decision Tree Entwurf

"Should you hire the candidate?"

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
level	Senior	Senior	Mid	Junior	Junior	Junior	Mid	Senior	Senior	Junior	Senior	Mid	Mid	Junior
language	Java	Java	Python	Python	R	R	R	Python	R	Python	Python	Python	Java	Python
tweets	No	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	No
PhD	No	Yes	No	No	No	Yes	Yes	No	No	No	Yes	Yes	No	Yes
Hire?	False	False	True	True	True	False	True	False	True	True	True	True	True	False

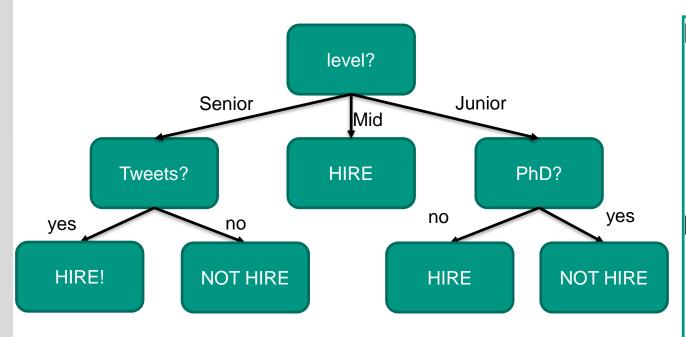


Entropie:									
level:	0.693536								
language:	0.860131								
tweets:	0.788450								
PhD:	0.892158								

Decision Tree Entwurf

"Should you hire the candidate?"

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14
level	Senior	Senior	Mid	Junior	Junior	Junior	Mid	Senior	Senior	Junior	Senior	Mid	Mid	Junior
language	Java	Java	Python	Python	R	R	R	Python	R	Python	Python	Python	Java	Python
tweets	No	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	No
PhD	No	Yes	No	No	No	Yes	Yes	No	No	No	Yes	Yes	No	Yes
Hire?	False	False	True	True	True	False	True	False	True	True	True	True	True	False



Entropie:

level: 0.693536

language: 0.860131

tweets: 0.788450

PhD: 0.892158

Entropie "Senior"

language: 0.4

tweets: 0.0

PhD: 0.950977

Klassifikation petal length (cm)≤ 2.45 gini = 0.6667Decision Tree – Iris Datensatz samples = 150 value = [50, 50, 50] class = setosa 1 : Iris Setosa 2 : Iris Versicolor 0 \False 3 : Iris Virginica True 40 mean1 0 mean2 petal width (cm)≤ 1.75 0 gini = 0.0mean3 gini = 0.5 0 00 SepalWidth [cm] samples = 50 0 samples = 100 000 value = [50, 0, 0]value = [0, 50, 50]0 0 800 0 0 00 class = setosa class = versicolor 0 00 0 00 000 0 0 00 0 00 000 00 00000 0 000 🗶 00000 0 petal length (cm)≤ 4.95 petal length (cm)≤ 4.85 0 0 0 00 gini = 0.0425qini = 0.1680 00 samples = 54 000 samples = 46 25 0 0 0 0 value = [0, 49, 5]value = [0, 1, 45]0 0 0 0 class = versicolor class = virginica 0 0 20 45 50 60 70 75 40 25 SepalLength [cm] petal width (cm)≤ 1.65 petal width (cm)≤ 1.55 sepal length (cm)≤ 5.95 gini = 0.0gini = 0.0408gini = 0.4444gini = 0.4444samples = 43samples = 48 samples = 6 samples = 3 value = [0, 0, 43] value = [0, 47, 1]value = [0, 2, 4]value = [0, 1, 2]20 class = virginica ∞ 0 class = virginica class = versicolor class = virginica 0 PetalWidth [cm] 01 00 0 $0 \infty \infty$ $\circ \infty$ sepal length (cm)≤ 6.95 gini = 0.0**CCC** gini = 0.0qini = 0.0gini = 0.0aini = 0.0gini = 0.4444 ∞ 0 0 0 samples = 1 samples = 2 samples = 47samples = 3samples = 1 samples = 3 value = [0, 47, 0]value = [0, 0, 3]value = [0, 0, 2]value = [0, 0, 1]value = [0, 1, 0]000 00 value = [0, 2, 1]class = versicolor class = virginica class = virginica class = versicolor class = virginica class = versicolor 1 : Iris Setosa 2: Iris Versicolor 3: Iris Virginica 0000 mean1 gini = 0.0gini = 0.0mean2 samples = 1 samples = 2mean3 0 00 value = [0, 2, 0]value = [0, 0, 1]10 20 30 40 50 60 70 class = versicolor class = virginica

PetalLength [cm]

Zwischenübung

Gegeben seien folgende Datenpunkte:

Label	X	X	X	0	0	0	0
х	1	4	4	1	3	3	4
у	1	1	3	3	2	4	4

Vorgehen:

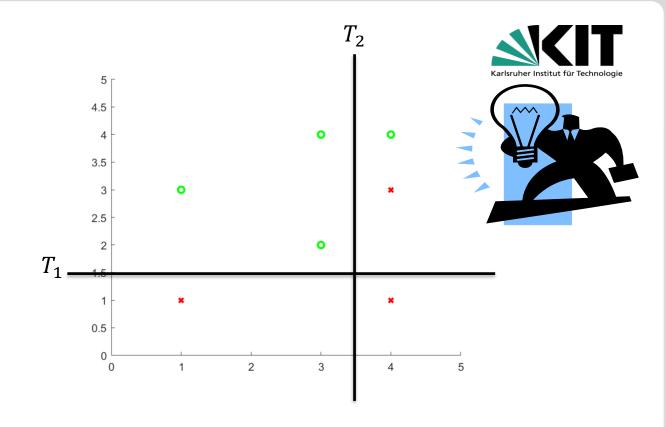
- 1. Skizzieren Sie die Datenpunkte
- 2. Fügen Sie zwei Trennlinien ein, welche die Datenpunkte möglichst "gut" trennen
- Entscheiden und begründen Sie rechnerisch nach welche Trennlinie die erste Ebene des Entscheidungsbaumes bilden sollte

Zwischenübung -Lsg

Gegeben seien folgende Datenpunkte:

Label	X	X	X	0	0	0	0
х	1	4	4	1	3	3	4
у	1	1	3	3	2	4	4

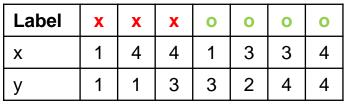
1. Skizzieren Sie die Datenpunkte

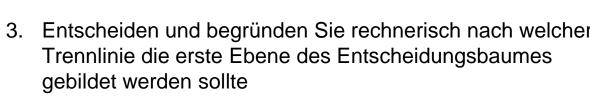


Zwischenübung -Lsg

Gegeben seien folgende Datenpunkte:

Label	X	X	X	0	0	0	0
х	1	4	4	1	3	3	4
у	1	1	3	3	2	4	4

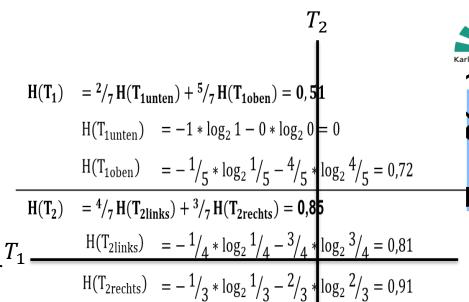




Einzel-Entropie:
$$H(S) = -p_1 \log p_1 - p_2 \log p_2$$

Gesamtentropie: $H_{Ges}(X) = \sum_{c \in X} G_i(c) * H_i(c)$, mit G_i als Gewichtungen der Einzel-Entropien

$$\begin{aligned} H(T_1) &= \frac{2}{7} H(T_{1unten}) + \frac{5}{7} H(T_{1oben}) = 0,51 \\ H(T_{1unten}) &= -1 * \log_2 1 - 0 * \log_2 0 = 0 \\ H(T_{1oben}) &= -\frac{1}{5} * \log_2 \frac{1}{5} - \frac{4}{5} * \log_2 \frac{4}{5} = 0,72 \end{aligned}$$



Zwischenübung -Lsg

Gegeben seien folgende Datenpunkte:

Label	X	X	X	0	0	0	0
х	1	4	5	1	3	3	4
у	1	1	3	3	2	4	4

3. Entscheiden und begründen Sie rechnerisch nach welche Trennlinie die erste Ebene des Entscheidungsbaumes bilden sollte

Einzel-Entropie: $H(S) = -p_1 \log p_1 - p_2 \log p_2$

Gesamtentropie: $H_{Ges}(X) = \sum_{c \in X} G_i(c) * H_i(c)$, mit G_i als Gewichtungen der Einzel-Entropien

$$H(T_1) = \frac{2}{7}H(T_{1unten}) + \frac{5}{7}H(T_{1oben}) = 0,51$$

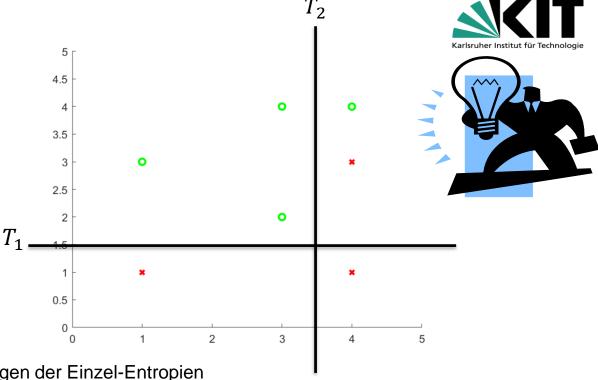
$$H(T_{1unten}) = -1 * \log_2 1 - 0 * \log_2 0 = 0$$

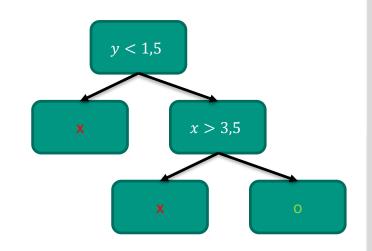
$$H(T_{1oben}) = -\frac{1}{5} * \log_2 \frac{1}{5} - \frac{4}{5} * \log_2 \frac{4}{5} = 0,72$$

$$H(T_2) = \frac{4}{7} H(T_{2links}) + \frac{3}{7} H(T_{2rechts}) = 0.85$$

$$H(T_{2links}) = -\frac{1}{4} * \log_2 \frac{1}{4} - \frac{3}{4} * \log_2 \frac{3}{4} = 0.81$$

$$H(T_{2rechts}) = -\frac{1}{3} * \log_2 \frac{1}{3} - \frac{2}{3} * \log_2 \frac{2}{3} = 0.91$$





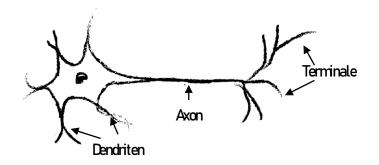
- Supervised Learning
 - Decision Tree

Klassifikation

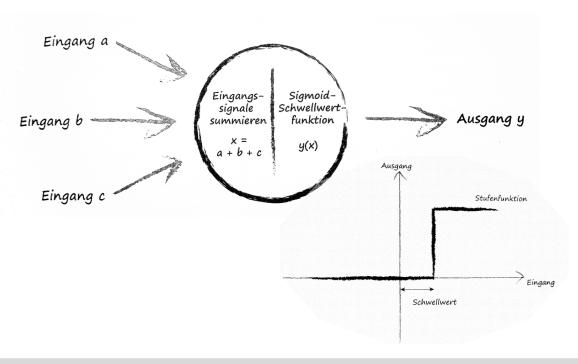
Karlsruher Institut für Technologie

Künstliche Neuronale Netze - Einführung

- Die Idee von Künstlichen Neuronalen Netzen beruht auf den Neuronennetzen des menschlichen Gehirns und finden Anwendung in zahlreichen Gebieten, wie z.B. Handschrifterkennung, Gesichtsdetektion, uvm.
- Aufteilung in zwei Teilbereiche
 - KNN, die modelliert werden um menschliches Verhalten nachzuahmen/ zu verstehen
 - KNN, modelliert um ein konkretes Anwendungsproblem aus Bereichen, wie beispielsweise der Statistik, zu lösen



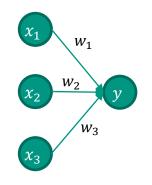
- KNN bestehen aus
 - Input-Units: Signale von der "Außenwelt"
 - Hidden-Units: interne Repräsentation der "Außenwelt", Eingang berechnet sich aus Übertragungsfunktion, Ausgang wird mit Aktivierungsfunktion belegt
 - Output-Units: Signale an die "Außenwelt"



Übertragungs- & Aktivierungsfunktionen

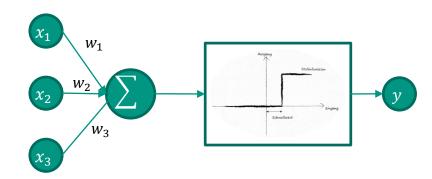
- Perceptron: einzelnes künstliches Neuron mit anpassbaren Gewichten und Schwellenwerten
- Übertragungsfunktion Perceptron, ohne Schwellenwert:

$$y = \sum_{i=1}^{n} w_i x_i$$



Übertragungsfunktion Perceptron, mit Schwellenwert:

$$y = \phi(\sum_{i=1}^{n} w_i x_i)$$



Übertragungs- & Aktivierungsfunktionen

- Hyperparameter: "ein Parameter, der zur Steuerung des Trainingsalgorithmus verwendet wird und dessen Wert im Gegensatz zu anderen Parametern nicht im eigentlichen Training des Modells gelernt wird".
- Aktivierungsfunktion: "eine Funktion, die das Eingangssignal übernimmt, ein Ausgangssignal generiert und dabei aber eine Art Schwellwert berücksichtig"
- Verschiedene Arten von Aktivierungsfunktionen:

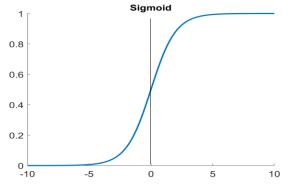
- Maximum-Funktion
- uvm

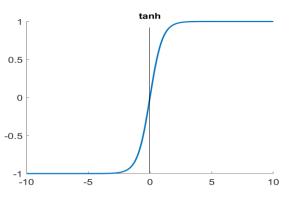
$$y = \begin{cases} 0: x < 0 \\ 1: x \ge 0 \end{cases}$$

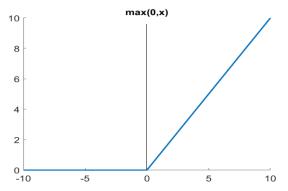
$$y = \frac{1}{1 + e^{-x}}$$

$$y = \tanh(x)$$

$$y = \max(0, x)$$

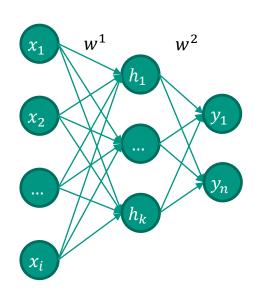






Karlsruher Institut für Technologie

Feedforward NN



$$\overline{x} = [x_1 \ x_2 \ \dots x_i]$$

$$W^{1} = \begin{bmatrix} w_{11}^{1} & \dots & w_{1k}^{1} \\ \dots & \dots & \dots \\ w_{i1}^{1} & \dots & w_{ik}^{1} \end{bmatrix}$$

$$\overline{h}' = [h'_1 \ h' \ \dots h'_k] = \overline{x} * W^1 = [x_1 \ x_2 \ \dots x_i] * \begin{vmatrix} w_{11}^1 & \dots & w_{1k}^1 \\ \dots & \dots & \dots \\ w_{i1}^1 & \dots & w_{ik}^1 \end{vmatrix}$$

$$\overline{h} = \phi\left(\overline{h}'\right) = \phi(\overline{x} * W^1)$$
, mit ϕ als Aktivierungsfunktion

$$y = [y_1 \dots y_n] = \overline{h} * W^2 = \phi([x_1 \ x_2 \ \dots x_i] * \begin{bmatrix} w_{11}^1 & \dots & w_{1k}^1 \\ \dots & \dots & \dots \\ w_{i1}^1 & \dots & w_{ik}^1 \end{bmatrix}) * \begin{bmatrix} w_{11}^2 & \dots & w_{1k}^2 \\ \dots & \dots & \dots \\ w_{k1}^2 & \dots & w_{in}^2 \end{bmatrix}$$

CNN - Faltung

Originalmatrix

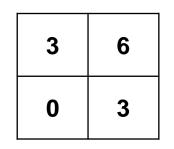
7	5	8
5	3	6
2	0	1

Kernel

0

-1

Resultierende Matrix



$$7^{*}(-1)+5^{*}1+5^{*}1+3^{*}0 = 3$$
$$5^{*}(-1)+8^{*}1+3^{*}1+6^{*}0 = 6$$
$$5^{*}(-1)+3^{*}1+2^{*}1+0^{*}0 = 0$$

$$3*(-1)+6*1+0*1+1*0 = 3$$

Faltung

Kernelmatrix wird mit vordefinierter Schrittgröße ("stride") über die Originalmatrix geschoben

Padding

Je nach Schrittgröße kann die Kernelmatrix über den Rand hinaus geschoben werden. Der Umgang mit dieser Situation wird "Padding" genannt.

VALID-Padding: kein Überschreiten der Ränder

SAME-Padding: z.B. mit zero-Padding: Der Originalmatrix wird außerhalb der Ränder "0" zugewiesen"

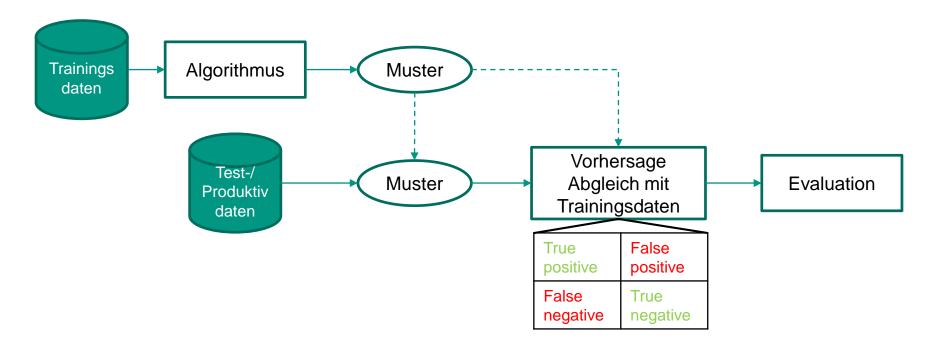
- Supervised Learning
 - Neuronale Netze

Klassifikation

Karlsruher Institut für Technologie

Bewertung des trainierten Modells - Confusion Matrix

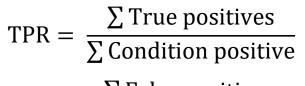
- Klare Zielvorgabe, eventueller Hypothesenansatz
- Über Trainingsphase auf ein Problem abgerichtet
- Produktiv als Assistenzsystem (bis hin zum Automated Decision Maker)
- Richtige Antwort muss während Trainingsphase vorliegen → Annotation, Label
- Lücke zwischen Input und definiertem Output füllen



Klassifikation

Bewertung des trainierten Modells - Confusion Matrix

Actual	lvalue
Actual	valuc



$$FPR = \frac{\sum False positives}{\sum Condition negative}$$

$$FNR = \frac{\sum False negatives}{\sum Condition positive}$$

$$TNR = \frac{\sum True \ negatives}{\sum Condition \ negative}$$

Yes True positive (TP) "Vorhersage richtig, Objekt vorhanden"

False negative (FN) "Vorhersage falsch, Objekt vorhanden"

False positive (FP)

"Vorhersage falsch, Objekt nicht vorhanden"

No

True negative (TN)

"Vorhersage richtig, Objekt nicht vorhanden"

"Legende" Algorithmus Vorhersage richtig True False Algorithmus Vorhersage falsch Predictive Entscheidung des Algorithmus value: Pos Gesuchtes Objekt (Husky) Nea Nicht das gesuchte Objekt (kein Husky) Yes: Actual value gesuchtes Objekt dargestellt

Gesuchtes Objekt nicht dargestellt

Gütekriterium:

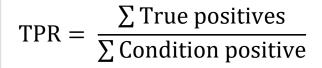
Klassifikationsrate: (accuracy)

P(richtig klassifiziert) = $\frac{t_p + t_n}{n_{ges}}$ P(falsch klassifiziert) = $\frac{f_p + f_n}{n_{ges}}$

True positive	False positive
False negative	True negative

Confusion Matrix

Zwischenübung



$$FPR = \frac{\sum False positives}{\sum Condition negative}$$

$$FNR = \frac{\sum False negatives}{\sum Condition positive}$$

$$TNR = \frac{\sum True \text{ negatives}}{\sum Condition \text{ negative}}$$

Tru "V Ok
Fa

ue positive (TP) False positive (FP) orhersage richtig, bjekt vorhanden"

$$t_p = 80$$

False negative (FN) "Vorhersage falsch,

Objekt vorhanden"

$$f_n = 10$$

"Vorhersage falsch, Objekt nicht vorhanden"

$$f_p = 5$$

True negative (TN)

"Vorhersage richtig, Objekt nicht vorhanden"

$$t_n = 50$$

$$TPR = ?$$

$$FPR = ?$$

Untersuchte Bilder	n_{ges}	145
Tatsächlich Husky	n_{Husky}	90
Tatsächlich kein Husky	$n_{noHusky}$	55
Alg behauptet Husky	n_{AHusky}	85
Alg behauptet kein Husky	$n_{AnoHusky}$	60

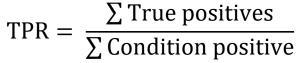
Berechnen Sie:

$$FNR = ?$$

$$TNR = ?$$

Confusion Matrix

Zwischenübung - Lsg



$$FPR = \frac{\sum False positives}{\sum Condition negative}$$

$$FNR = \frac{\sum False negatives}{\sum Condition positive}$$

$$TNR = \frac{\sum True \ negatives}{\sum Condition \ negative}$$

Alg behauptet kein Husky

•			

 $n_{AnoHusky}$

True positive (TP)
"Vorhersage richtig,
Objekt vorhanden"
$t_n = 80$

False negative (FN) "Vorhersage falsch, Objekt vorhanden"

$$f_n = 10$$

False positive (FP)

"Vorhersage falsch, Objekt nicht vorhanden"

$$f_p = 5$$

True negative (TN)

"Vorhersage richtig, Objekt nicht vorhanden"

$$t_n = 50$$

Untersuchte Bilder	n_{ges}	145	Berechnen Sie:	FNR =
Tatsächlich Husky	n_{Husky}	90	• TPR	
Tatsächlich kein Husky	$n_{noHusky}$	55	• FPR	TND —
Alg behauptet Husky	n_{AHusky}	85	FNRTNR	TNR =

60

- Supervised Learning
 - Regression
 - Decision Tree
 - Neuronale Netze
 - Konfusionsmatrix

Ziele der heutigen Übung

Nach der heutigen Übung können Sie....

...Ansätze zur Verwaltung und Analyse großer Datenbestände hinsichtlich ihrer Anwendbarkeit und Wirksamkeit einschätzen

Merkmale und Eigenschaften von selbstlernenden Algorithmen benennen und abgrenzen

Methoden des maschinellen Lernens einordnen, beschreiben und bewerten

... Modelle berechnen unter Anwendung überwachter maschineller Lernmethoden

... Verfahren zur Auswahl einer geeigneter Methode beschreiben und anwenden