

Institut für Biomedizinische Technik

Gebäude 30.33, Fritz-Haber-Weg 1 D-76131 Karlsruhe Tel.: +49 721 608-2650

www.ibt.kit.edu

Formelsammlung Lineare Elektrische Netze

Prof. Dr. rer. nat. Olaf Dössel

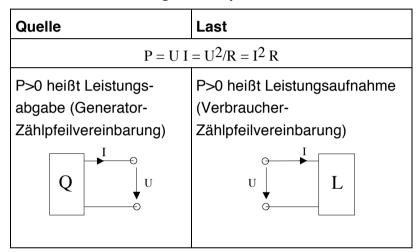
Stand 2009

Diese Formelsammlung darf NICHT in der Klausur verwendet werden!

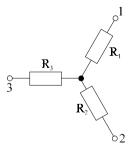
Teil I: Netzwerktheorie

1. Gleichstromschaltungen

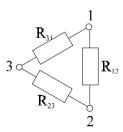
Gleichstrom-Leistung an Zweipolen



2. Netzumwandlung:



Sternschaltung



Dreieckschaltung

$$\begin{array}{|c|c|c|c|c|c|}\hline R_1 = \frac{R_{12}R_{31}}{R_{12} + R_{23} + R_{31}} & R_2 = \frac{R_{23}R_{12}}{R_{12} + R_{23} + R_{31}} & R_3 = \frac{R_{31}R_{23}}{R_{12} + R_{23} + R_{31}} \\ \hline R_{12} = R_1 + R_2 + R_1 \frac{R_2}{R_3} & R_{23} = R_2 + R_3 + R_2 \frac{R_3}{R_1} & R_{31} = R_3 + R_1 + R_3 \frac{R_1}{R_2} \\ \hline & \text{bzw. mit den Leitwerten ausgedrückt:} \\ \hline G_{12} = \frac{G_1G_2}{G_1 + G_2 + G_3} & G_{23} = \frac{G_2G_3}{G_1 + G_2 + G_3} & G_{31} = \frac{G_3G_1}{G_1 + G_2 + G_3} \\ \hline \end{array}$$

3. Formalisierte Verfahren

Maschenstromverfahren:

$$\begin{pmatrix} R_{11} & R_{12} & . & R_{1m} \\ R_{21} & R_{22} & . & R_{2m} \\ . & . & . & . \\ R_{m1} & R_{m2} & . & R_{mm} \end{pmatrix} \cdot \begin{pmatrix} I_1 \\ I_2 \\ . \\ I_m \end{pmatrix} = \begin{pmatrix} \sum U_{01} \\ \sum U_{02} \\ . \\ \sum U_{0m} \end{pmatrix}$$

m: z-(k-1) Maschenströme in i=1...m Maschen.

 R_{ii} : Summe aller Widerstände in der Masche i $(R_{ii} > 0)$.

$$\begin{split} R_{ik} = R_{ki} \colon & \text{Summe aller Widerstände im Koppelzweig zwischen} \\ & \text{Masche i und Masche k } (i \neq k). R_{ik} > 0 \text{, wenn } I_i \text{ und} \\ & I_k \text{ gleichsinnig sind, sonst ist } R_{ik} < 0 \,. \end{split}$$

 $\sum U_{0i}: \quad \text{Summe aller Quellen-Spannungen in der Masche i.} \\ U_{0i} < 0 \,, \ \text{wenn in der Masche i die Z\"{a}hlpfeile von} \\ \quad \text{Maschenstrom und Spannung gleichsinnig sind, sonst} \\ \quad U_{0i} > 0 \,. \\ \label{eq:spannungen}$

Knotenpotentialverfahren:

$$\begin{pmatrix} G_{11} & G_{12} & . & G_{1n} \\ G_{21} & G_{22} & . & G_{2n} \\ . & . & . & . \\ G_{n1} & G_{n2} & . & G_{nn} \end{pmatrix} \cdot \begin{pmatrix} V_1 \\ V_2 \\ . \\ V_n \end{pmatrix} = \begin{pmatrix} \sum I_{01} \\ \sum I_{02} \\ . \\ \sum I_{0n} \end{pmatrix}$$

n: (k-1) unabhängige Knotengleichungen an n Knoten.

 $G_{ii}\colon \qquad \text{Summe aller Leitwerte aller vom Knoten i ausgehender} \\ Zweige\,(\,G_{ii}\,>0\,).$

 $G_{ik} = G_{ki} : \text{Summe aller Leitwerte im Zweig zwischen Knoten i und} \\ \text{Knoten k } (G_{ik} < 0).$

 $\sum I_{0i}$: Summe aller Quellenströme am Knoten i. (Ströme, die zum Knoten hin gerichtet sind, werden hierbei positiv gezählt)

4. Zeitlich veränderliche Ströme und Spannungen:

Kapazität C: $C = \frac{Q}{U} \qquad \qquad i(t) = \frac{dq}{dt} = C \cdot \frac{du(t)}{dt}$

Induktivität L : $L = \frac{N \cdot \phi}{I}$ $u(t) = L \cdot \frac{di}{dt}$

5. Komplexe Wechselstromrechnung:

$$\underline{Z} = \frac{\hat{\underline{U}}}{\hat{\overline{I}}} = \frac{\hat{\underline{U}} \cdot e^{j\phi_u}}{\hat{\underline{I}} \cdot e^{j\phi_i}} = \frac{\hat{\underline{U}}}{\hat{\overline{I}}} \cdot e^{j\left(\phi_u - \phi_i\right)} = Z \cdot e^{j\phi_{ui}}$$

$$\underline{Y} = \frac{\underline{\hat{I}}}{\widehat{U}} = \frac{\hat{I} \cdot e^{j\phi_i}}{\hat{U} \cdot e^{j\phi_u}} = \frac{\hat{I}}{\hat{U}} \cdot e^{j(\phi_i - \phi_u)} = Y \cdot e^{j\phi_{iu}}$$

.

6. Schwingkreise:

Serienkreis	Dualität bzw.	Parallelkreis
	Gemeinsamkeiten	R _P
R _s L C	<u>U</u> ↔ <u>I</u>	c
"	$\underline{Z}_{S} \leftrightarrow \underline{Y}_{P}$	
	$R_S \leftrightarrow \frac{1}{R_P}$	<u>L</u>
	$X_S \leftrightarrow B_P$	
$\underline{Z}_{S} = R_{S} + j \left(\omega L - \frac{1}{\omega C}\right)$ $= R_{S} \left(1 + jQ_{S} v\right)$	$v = \frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}$	$\underline{\underline{Y}}_{P} = \frac{1}{R_{P}} + j \left(\omega C - \frac{1}{\omega L} \right)$
$= R_S(1 + JQ_SV)$		$=\frac{1}{R_{P}}\Big(1+jQ_{P}v\Big)$
$Q_{S} = \frac{ X_{Res} }{R_{S}}$	$Q = \frac{Blindleistung an L oder C}{Wirkleistung} \bigg _{\omega = \omega_0}$	$Q_{p} = \frac{ B_{Res} }{\frac{1}{R_{P}}}$
$= \frac{1}{R_{S}} \sqrt{\frac{L}{C}}$		$= R_P \sqrt{\frac{C}{L}}$
Die Güte ist groß,		Die Güte ist groß,
wenn R _S klein ist,		wenn R _P groß ist, d.
d. h. bei wenig		h. bei wenig
ohmschen		ohmschen Verlusten
Verlusten		

	Resonanz:		
	$\varphi_{\rm Y} = -\varphi_{\rm Z} = 0$		
	$\omega_0 = \frac{1}{\sqrt{L C}},$		
	Q = 0		
	(Blindleistung)		
	v = 0		
$R_{S} \underline{Y}_{S} = \frac{1}{1 + jQ_{S}v}$	Maximum bei v=0, d. h. $\omega = \omega_0$,	$\frac{1}{R_P} \ \underline{Z}_P = \frac{1}{1 + jQ_{PV}}$	
	$v_H = \pm 1/Q$		
$\omega > \omega_0$ (v>0):		$\omega > \omega_0$ (v>0):	
induktiv		kapazitiv	
$\omega \to \infty$:		$\omega \to \infty$:	
Unterbrechung		Kurzschluß durch	
durch L		С	
$\omega \rightarrow 0$:		$\omega \rightarrow 0$:	
Unterbrechung		Kurzschluß durch	
durch C		L	
$\omega < \omega_0$ (v<0):		$\omega < \omega_0$ (v<0):	
kapazitiv		induktiv	
	$\phi_Z \leftrightarrow \phi_Y$		
	$\phi_Y \leftrightarrow \phi_Z$		

7. Leistungsberechnung:

Effektivwerte

a) u(t) und i(t) sind beliebige, aber periodische Zeitfunktionen

$$I_{eff}^2 = \frac{1}{T} \int_0^T i^2(t) dt$$
 $U_{eff}^2 = \frac{1}{T} \int_0^T u^2(t) dt$

b) u(t), i(t) sind sinusförmig:

$$I_{eff} = \frac{\hat{I}}{\sqrt{2}}$$
 $U_{eff} = \frac{\hat{U}}{\sqrt{2}}$

Der komplexe Leistungszeiger:

$$\underline{\mathbf{S}} = \underline{\mathbf{U}} \cdot \underline{\mathbf{I}}^* = \frac{1}{2} \, \underline{\hat{\mathbf{U}}} \cdot \underline{\hat{\mathbf{I}}}^*$$

Wirkleistung: $P = Re\{\underline{S}\}$ [W]

Blindleistung: $Q = Im{\underline{S}}$ [var]

Scheinleistung: $S = |\underline{S}| = \sqrt{P^2 + Q^2}$ [VA]

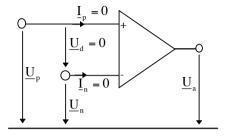
Außerdem gilt:
$$\underline{S} = \underline{U} \underline{I}^*$$

$$= \underline{I} \underline{I}^* \underline{Z} = \underline{I}^2 \underline{Z} = \underline{I}^2 (R+jX)$$

$$= \underline{U} \underline{U}^* \underline{Y}^* = \underline{U}^2 \underline{Y}^* = \underline{U}^2 (G-iB)$$

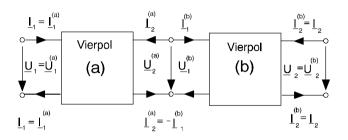
Somit gilt:

8. Der ideale Operationsverstärker:



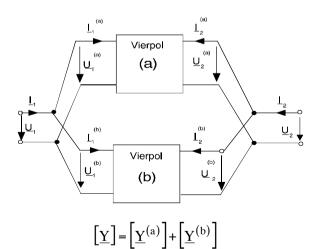
9. Lineare Vierpole

I. Kettenschaltung von 4-Polen

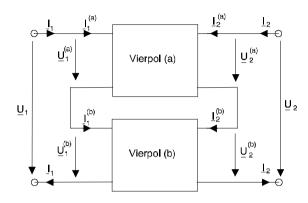


$$[\underline{A}] {=} [\underline{A}^{(a)}] {\cdot} [\underline{A}^{(b)}]$$

II. Parallelschaltung von 4-Polen

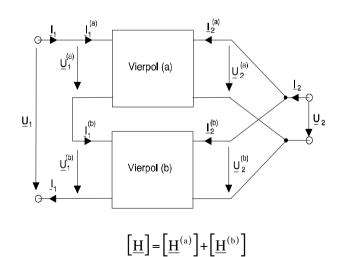


III. Serienschaltung von 4-Polen



$$[\underline{Z}] = [\underline{Z}^{(a)}] + [\underline{Z}^{(b)}]$$

IV. Reihen-Parallel-Schaltung von 4-Polen



10. Vierpol-Matrizen und Parameterumrechnung

[z]	$egin{array}{cccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array}$	$ \begin{array}{c c} Y_{22} & -Y_{12} \\ \hline det[Y] & det[Y] \\ -Y_{21} & Y_{11} \\ \hline det[Y] & det[Y] \end{array} $	$\frac{1}{1}$ $\frac{A_{22}}{1}$	$\begin{array}{c c} \frac{\det[H]}{H_{22}} & \frac{H_{12}}{H_{22}} \\ -\frac{H_{21}}{H_{22}} & \frac{1}{H_{22}} \end{array}$
[Y]	$ \begin{array}{c c} Z_{22} & -Z_{12} \\ \hline \text{det}[Z] & \text{det}[Z] \\ -Z_{21} & Z_{11} \\ \hline \text{det}[Z] & \text{det}[Z] \\ \end{array} $	Y ₁₁ Y ₁₂ Y ₂₁ Y ₂₂	$\begin{array}{c c} A_{22} & -\det[A] \\ \hline A_{12} & A_{12} \\ \hline -1 & A_{12} \\ \hline A_{12} & A_{12} \\ \end{array}$	$\begin{array}{c c} \frac{1}{H_{11}} & \frac{-H_{12}}{H_{11}} \\ \frac{-H_{21}}{H_{11}} & \frac{\det[H]}{H_{11}} \end{array}$
[A]	$\begin{array}{c c} \frac{Z_{11}}{Z_{21}} & \frac{\det[Z]}{Z_{21}} \\ \frac{1}{Z_{21}} & \frac{Z_{22}}{Z_{21}} \end{array}$	$\begin{array}{c c} \frac{-Y_{22}}{Y_{21}} & \frac{-1}{Y_{21}} \\ -\det[Y] & \frac{-Y_{11}}{Y_{21}} & \frac{-Y_{11}}{Y_{21}} \end{array}$	A ₁₁ A ₁₂ A ₂₁ A ₂₂	$\begin{array}{c c} -\det[H] & -H_{11} \\ \hline H_{21} & H_{21} \\ -H_{22} & -1 \\ \hline H_{21} & H_{21} \end{array}$
[H]	$\begin{array}{c c} \frac{\text{det}[Z]}{Z_{22}} & \underline{Z_{12}} \\ \hline Z_{22} & \overline{Z_{22}} \\ \underline{-Z_{21}} & \underline{1} \\ \overline{Z_{22}} & \overline{Z_{22}} \end{array}$	$\begin{array}{ccc} \frac{1}{Y_{11}} & \frac{-Y_{12}}{Y_{11}} \\ \frac{Y_{21}}{Y_{11}} & \frac{\det[Y]}{Y_{11}} \end{array}$	$\begin{array}{c c} A_{12} & \det[A] \\ \hline A_{22} & A_{22} \\ \hline -1 & A_{21} \\ A_{22} & A_{22} \\ \end{array}$	H_{11} H_{12} H_{21} H_{22}

11. Ortskurven, Netzwerke bei veränderlicher Frequenz

variable	Ortskurve der komplexen Größe		
komplexe Größe	<u>F(p)</u> bei Variation des reellen		
<u>F(p)</u> :	Paramters p:		
a + j b f(p)	Gerade parallel zur Im-Achse im		
	Abstand a		
a f(p) + jb	Gerade parallel zur Re-Achse im		
	Abstand b		
1	Kreis durch Ursprung, Mittelpunkt auf		
a + jb f(p)	der Re-Achse, Durchmesser 1/a (*)		
1	Kreis durch Ursprung, Mittelpunkt auf		
b f(p) + ja	der Im-Achse, Durchmesser 1/a (*)		
	, , , , , ,		
Operationen	Ortskurve		
$\underline{\underline{A}}(p) + \underline{\underline{B}}$	Parallelverschiebung von A(p) um B		
$\underline{\mathbf{A}}(\mathbf{p}) \exp(\mathbf{j}\mathbf{h})$	Drehung von A(p) um Ursprung um		
	Winkel h		
<u>A</u> (p) C	Streckung		
<u>A</u> (p) <u>C</u>	Drehstreckung		
$(\underline{A}(p) \underline{C}) + \underline{B}$	Drehstreckung und		
	Parallelverschiebung		
	(*): falls $f(p) \rightarrow \infty$ möglich		

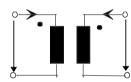
12. Logarithmische Größenverhältnisse, Pegel

Definition:
$$a_p = 10 \log \left(\frac{P_1}{P_2}\right) dB$$

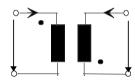
Definition:
$$a_u = 20 \log \left(\frac{U_1}{U_2}\right) dB$$

Definition:
$$a_i = 20 \log \left(\frac{I_2}{I_1}\right) dB$$

13. Transformatoren ("Trafos"), Übertrager



Bei gleichsinnigen Wicklungen(··) erzeugen Ströme in den gezeichneten Richtungen im Kern gleichsinnige magnetische Flüsse.



Bei gegensinnigen Wicklungen(·.) erzeugen Ströme in den gezeichneten Richtungen im Kern gegensinnige magnetische Flüsse.

$$\text{Kopplungskonstante k:} \qquad k^2 = \frac{M_{12}M_{21}}{L_1L_2} = \frac{\Phi_{21}}{\Phi_{11}} \cdot \frac{\Phi_{12}}{\Phi_{22}}$$

 Φ_{21} : Anteil des von i₁ erzeugten Flusses in Spule 2 Φ_{12} : Anteil des von i₂ erzeugten Flusses in Spule 1

Für k=1 gilt:
$$\Phi_{21} = \Phi_{11}$$
 und $\Phi_{12} = \Phi_{22}$

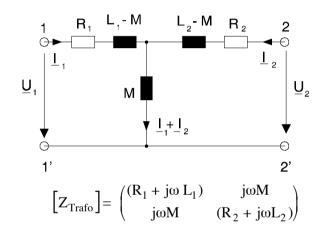
Streufaktor:
$$\sigma = 1 - k^2$$

Übersetzungsverhältnis:
$$\ddot{u}^2 = \frac{L_1}{L_2}$$
, $\ddot{u} = \frac{w_1}{w_2}$

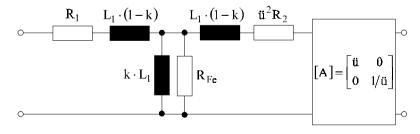
Transformator / Übertrager bei Betrieb an sinusförmiger Wechselspannung

$$\begin{array}{llll} \underline{U}_1 & = & (R_1 + j\omega L_1) \, \underline{I}_1 & + & j\omega \, M \, \underline{I}_2 \\ \underline{U}_2 & = & j\omega \, M \, \underline{I}_1 & + & (R_2 + j\omega L_2) \, \underline{I}_2 \end{array}$$

Das Vierpol-T-Ersatzschaltbild:



Ersatzschaltbild mit Wicklungs- und Kernverlusten:



	I			
	"real"	verlustlos	verlust- &	ideal
		$R_1=0, R_2=0$	streulos	R _i =0; k=1
			R _i =0; k=1	$\left \frac{Z_{v}}{j\omega L_{2}}\right \ll 1$
<u> 2</u> 1	_ <u>jωM</u> R ₂ + jωL ₂ + <u>Z _V</u>	$-\frac{k \cdot \ddot{u}}{\left(1 + \frac{Z_{V}}{j\omega L_{2}}\right)}$	$-\frac{\ddot{u}}{\left(1+\frac{Z_{v}}{j_{\omega}L_{2}}\right)}$ lastabhängig!	-ü last <u>un</u> abhängig!
<u>l2</u>	_ <u>jωM</u>			
$\frac{\underline{I_2}}{\underline{I_1}}$ $\frac{\underline{I_1}}{U_2} = 0$ Kurzschluss	$-\frac{1}{R_2 + j\omega L_2}$	–k·ü	-ü	-ü
<u>U2</u> U1	j _o M <u>Z</u> _v	<u>k</u> 1	1/ ü	1/ ü
<u> </u>	$(R_1 + j\omega L_1) \cdot (R_2 + j\omega L_2 + \underline{Z_v}) + \omega^2 M^2$	$\frac{k}{\ddot{u}} \cdot \frac{1}{1 + j\omega L_2 Y_V \left(1 - k^2\right)}$	last <u>un</u> abhängig!	/ u
U ₂	<u>jωM</u> R ₁ + jωL ₁	<u>k</u> ü	<u>1</u> ü	<u>1</u> ü
$ \begin{array}{c c} \underline{U_2} \\ \underline{U_1} \\ \underline{I_2} = 0 \\ \text{Leerlauf} $	$R_1 + j\omega L_1$	ü	ü	ü
<u>Ze</u>	$(R_1 + j\omega L_1)$	$\left(1-k^2\right) + \frac{Z_v}{j\omega L_2}$	ü² ⋅Z _∨	ü²⋅Z _∨
	$+\frac{\omega^2 M^2}{R_2 + j\omega L_2 + \underline{Z}_{\underline{V}}}$	$j\omega L_1 \cdot \frac{\left(1-k^2\right) + \frac{Z_v}{j\omega L_2}}{1+\frac{Z_v}{j\omega L_2}}$	$\frac{\ddot{u}^2 \cdot Z_{\vee}}{1 + \frac{Z_{\vee}}{j\omega L_2}}$	Impedanzanpassung!
Z_{e} $Z_{v} = 0$	$(R_1 + j\omega L_1)+$	$j\omega L_1(1-k^2)$		
Kurzschluss	$\frac{\omega^2 M^2}{\left(R_2 + j\omega L_2\right)}$	()	0	0
$\frac{Z_e}{Z_V} = \infty$ Leerlauf	R ₁ + jωL ₁	jωL ₁	jωL ₁	jωL ₁
Kettenmatrix				[ü 0]
[A]				[o 1/ _ü]

$$\frac{I_1}{I_2} \sim -\frac{w_2}{w_1}$$

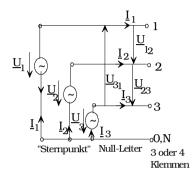
gegenphasig!

$$\frac{\underline{U_1}}{\underline{U_2}} \sim \frac{\underline{w_1}}{\underline{w_2}}$$

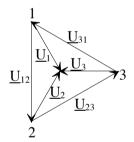
in Phase!

$$\begin{pmatrix} \frac{U_1}{\underline{i}} \end{pmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{pmatrix} \frac{U_2}{-\underline{I}_2} \end{pmatrix}$$
$$\begin{bmatrix} A^{Kette} \end{bmatrix} = \begin{bmatrix} A^1 \end{bmatrix} \cdot \begin{bmatrix} A^2 \end{bmatrix}$$

14. Drehstrom-Netzwerke



Strangspannungen \underline{U}_1 , \underline{U}_2 , \underline{U}_3 sind die Spannungen zwischen Leiter und "Sternpunkt" (Null-Leiter).



Die Spannungen zwischen den einzelnen Leitern werden mit "Leiterspannungen" oder "verkettete Spannungen" (<u>U</u>₁₂, <u>U</u>₂₃, <u>U</u>₃₁) bezeichnet.

$$\begin{array}{rcl}
\underline{U}_{12} & = & \underline{U}_1 - \underline{U}_2 \\
\underline{U}_{23} & = & \underline{U}_2 - \underline{U}_3 \\
\underline{U}_{31} & = & \underline{U}_3 - \underline{U}_1 \\
\underline{U}_{12} + \underline{U}_{23} + \underline{U}_{31} & = & 0
\end{array}$$

<u>l</u>₁, <u>l</u>₂, <u>l</u>₃ heißen Leiterströme. In der Stern-Schaltung sind die Leiterströme identisch mit den Strangströmen.

Leistungsvergleich bei identischen Lastimpedanzen $\underline{Z} = Z \cdot e^{j \widehat{\Phi}_Z}$

Schaltung:	Spannung	Scheinleistung	Verhältnis der Scheinleistung en
Stern- Generator, Stern- Verbraucher	$U = \sqrt{3} U_{Gen}$	$S_{YY} = 3 U_{Gen}^2 \frac{1}{Z}$	
Stern- Generator, Dreieck- Verbraucher	$U = \sqrt{3} U_{Gen}$	$S_{YD} = 9 U_{Gen}^2 \frac{1}{Z}$	$S_{YD}/S_{YY} = 3$