Institut für Biomedizinische Technik, Karlsruher Institut für Technologie

Fritz-Haber-Weg 1 76131 Karlsruhe Tel.: 0721/608-42650

Lineare Elektrische Netze

Leiter: Prof. Dr. rer. nat. Olaf Dössel Übungsleiter: Dipl.-Ing. G. Lenis Tel: 0721 608-42650 Tel: 0721 608-45478 Olaf.Doessel@kit.edu Gustavo.Lenis@kit.edu

<u>Tutorium Nr. 6:</u> Bode-Diagramme

Aufgabe 1

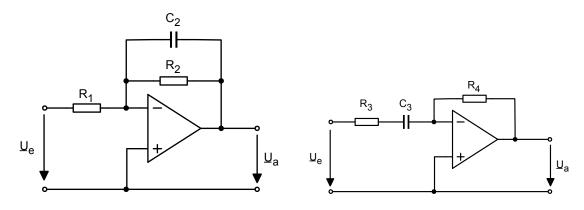


Figure 1: Abb 1.1

Figure 2: Abb 1.2

- (a) Geben Sie die Übertragungsfunktionen der idealen OP-Schaltungen in Abb 1.1 und Abb 1.2 an.
- (b) Bestimmen Sie jeweils eine geeignete Normierungsfrequenz Ω_1 für die Übertragungsfunktionen zu Abb 1.1 und Ω_2 zu Abb 1.2.
- (c) Gegeben sind nun folgende Werte: $R_1 = 10k\Omega$, $R_2 = 100k\Omega$, $R_3 = 1k\Omega$, $R_4 = 10k\Omega$, $C_2 = 1pF$, $C_3 = 1nF$ Zeichnen Sie jeweils ein Bodediagramm (Betrag und Phase) für die Abbildungen 1.1 und 1.2. Verwenden Sie dabei folgende Masseinheiten: 1cm entspricht einer Dekade bzw. 20dB oder 45° bzw. $\frac{\pi}{4}$.

Im Folgenden sollen Sie die Frequenz $f=10\frac{MHz}{2\pi}$ verstärken und alle anderen Frequenzen nach Möglichkeit dämpfen. Die Normierungsfrequenz sei jetzt $f_N=1\frac{kHz}{2\pi}$.

(d) Entwerfen Sie mit Hilfe der Schaltungen in Abbildungen 1.1 - 1.2 und einem Spannungsfolger einen Filter, für den gilt:

$log\Omega_N$	$a_V[dB]$
<2	Steigung + 20 dB/Dekade
2	0
3	20
4	40
5	20
6	0
>6	Steigung - 20 dB/Dekade

Zeichnen Sie die Schaltung und den **Amplitudengang**. Wie lautet die gesamte Übertragungsfunktion $\frac{\underline{U}_a}{\underline{U}_e}$?

(e) Zur Dimensionierung, d.h. zur Anpassung an den geforderten Verlauf von

 a_V sollen nur die Werte für C_2 und C_3 verändert werden. Welche Werte müssen für C_2 und C_3 gewählt werden?

Aufgabe 2

- (a) Wie berechnen sich im Allgemein der Betrag in dB und die Phase einer Funktion $\frac{U_a}{U_c}$ bei einem Bodediagramm?
- (b) Gegeben sei folgende Funktion:

$$\frac{\underline{U}_a}{\underline{U}_e} = -100 \frac{(1+j10^{-3}\Omega)^4}{(1+j10^{-2}\Omega)^2(1+j10^{-4}\Omega)^2}$$

Zeichnen Sie ein Bodediagramm (Betrag und Phase) dieser Funktion.

- (c) In welchem Frequenzbereich wird das Signal maximal verstärkt? Geben Sie die Lösung als Frequenz in Hz an, wobei die Bezugsfrequenz 1 Hz ist. Um welchen Faktor erhöht sich hier die Amplitude des Eingangssignals?
- (d) Ein Eingangssignal \underline{U}_e enthält einen Frequenzanteil bei $\Omega=10^5$ mit einem Betrag von 2V. Welchen Betrag hat das Ausgangssignal \underline{U}_a bei dieser Frequenz?

Aufgabe 3

(a) Zeichnen Sie das Bodediagramm zu folgendem Spannungsverhältnis. Skalieren Sie die Achsen so, dass 1cm einer Dekade bzw. 20 dB oder 45° entspricht.

$$\frac{\underline{U}_a}{\underline{U}_e} = 10 \frac{j\Omega(1+j10^{-3}\Omega)}{(1+j\Omega)(1+10^{-2}j\Omega)}$$

- (b) Das in a) erstellte Bodediagramm zeigt nicht das gewünschte Verstärkungsbzw. Dämpfungsverhalten. Auch ist die Phasenverschiebung nicht gewünscht. Die Tabelle zeigt die gewünschte Verstärkung und Phasenverschiebung.
 - Zeichnen Sie das Bodediagramm, das durch die Tabelle beschrieben wird in ein neues Diagramm mit der in a) definierten Skalierung.
 - Wie muss das Spannungsverhältnis $\frac{\underline{U}_a}{\underline{U}_e}$ aus Aufgabenteil a) verändert werden, dass es dem gewünschten Verhalten aus die Tabelle entspricht? Schreiben Sie das neue Spannungsverhältnis $\frac{\underline{U}_a'}{\underline{U}_e'}$ auf.

$log\Omega$	$a_V[dB]$	φ
<-2	Steigung 20 dB/Dekade	90°
-2	-20	90°
-1	0	90°
0	20	45°
1	20	0°
2	20	-45°
3	0	-90°
$\overline{}>3$	Steigung -20 dB/Dekade	-90°