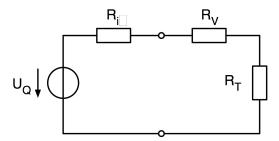
Institut für Biomedizinische Technik, Karlsruher Institut für Technologie

Fritz-Haber-Weg 1 76131 Karlsruhe Tel.: 0721/608-42650

Lineare Elektrische Netze

Leiter: Prof. Dr. rer. nat. Olaf Dössel Übungsleiter: Dipl.-Ing. G. Lenis Tel: 0721 608-42650 Tel: 0721 608-45478 Olaf.Doessel@kit.edu Gustavo.Lenis@kit.edu


 $\frac{\ddot{\mathbf{U}}\mathbf{bungsblatt\ Nr.\ 1:\ Netzwerkanalyse}}{\ddot{\mathbf{A}}\mathbf{quivalente\ Strom-/Spannungsquellen}}$

Ein Messwiderstand mit dem von seiner Umgebungstemperatur T abhängigen Widerstandswert R_T wird über einen temperaturunabhängigen Vorwiderstand R_V von einer Spannungsquelle mit der Quellenspannung U_Q und dem Innenwiderstand R_i gespeist.

Die Temperaturabhängigkeit des Widerstandswertes R_T ist durch folgende Gleichung gegeben:

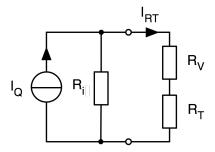
$$R_T = R_0[1 + \alpha(T - T_0)]$$

Für die Messschaltung gilt:

Weiterhin gilt Folgendes für die Bauteile dieser Schaltung:

$$R_0 = 40 \Omega$$

 $T_0 = 300 K$
 $\alpha = 10^{-2} K^{-1}$
 $U_Q = 50 V$
 $R_i = 25 \Omega$

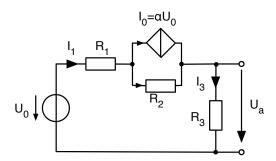

Die Erwärmung des Messwiderstandes R_T durch die zugeführte elektrische Energie darf im Rahmen dieser Aufgabe vernachlässigt werden.

(a) Für welchen Wert von T nimmt R_T die maximale elektrische Leistung P_{RT} auf? Für diese Teilaufgabe gilt $R_V=35\,\Omega.$

Hinweis: Finden Sie zuerst mit Hilfe von Differentialrechnung den Wert von R_T , der zur maximal umgesetzten Leistung P_{RT} führt. Nutzen Sie Ihr mathematisches Wissen über das Funktionsverhalten von $P_{RT}(R_T)$, um hinreichende Bedingungen für den Beweis des Maximums zu liefern. Bestimmen Sie mit dem maximierenden R_T die dazu gehörende Temperatur T. Rechnen Sie allgemein und setzen Sie erst am Ende ein.

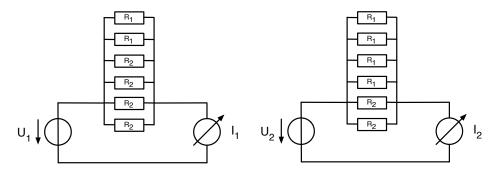
(b) Nun soll R_V unbekannt sein. Wie groß muss R_V gewählt werden, wenn die im Messwiderstand umgesetzte Leistung den maximalen Wert $P_G = 10 W$ annehmen darf?

Die Spannungsquelle U_Q wird jetzt durch die zu ihr äquivalente Gleichstromquelle ersetzt

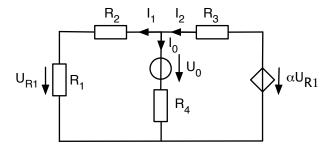


(c) Berechnen Sie ${\cal I}_Q.$ Verwenden Sie dafür die bei der Teilaufgabe (a) genannten Bauteilwerte:

$$\begin{array}{rcl} U_Q & = & 50 \, V \\ R_i & = & 25 \, \Omega \\ R_V & = & 35 \Omega \end{array}$$

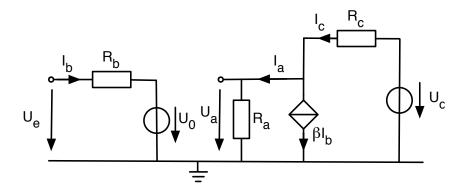

(d) Nun soll überprüft werden, ob sich die Ergebnisse der Teilaufgabe (a) bei dieser neuen Darstellung der Schaltung ändern. Bestimmen Sie hierfür den Messwiderstand R_T , der die umgesetzte elektrische Leistung P_{RT} maximiert. Bestimmen Sie dazu den maximieren Strom I_{RT} .

Gegeben sei folgende Schaltung aus idealen Bauelementen, die über eine ideale Gleichspannungsquelle U_0 und eine spannungsgesteuerte Gleichstromquelle $\alpha \cdot U_0$ versorgt wird.



- (a) Berechnen Sie die Spannung U_a im Leerlauffall. Geben Sie U_a in Abhängigkeit der drei Widerstände, der Quellspannung U_0 und des Vorfaktors α .
- (b) Bestimmen Sie den Kurzschlussstrom I_K . In der Gleichung für I_K dürfen nur Widerstände, die Quellspannung U_0 und der Vorfaktor α vorkommen.
- (c) Für welches α wird im Kurzschlussfall in R_1 keine Wirkleistung verbraucht?
- (d) Wie groß ist der Innenwiderstand R_i der Gesamtschaltung?

Wie groß sind R_1 und R_2 , wenn bei den folgenden Anordnungen bei einer Gleichspannung von $U_1 = U_2 = 100V$ der Strom $I_1 = 4A$ bzw. $I_2 = 3.2A$ gemessen wurde? Das Amperemeter kann als ideal angenommen werden, d.h. der Innenwiderstand ist gleich Null.



Gegeben sei das folgende Widerstandsnetzwerk:

- (a) Geben Sie die zwei Maschengleichungen und die Knotengleichung, die das Verhalten dieser Schaltung beschreiben.
- (b) Bestimmen Sie den Strom I_0 in allgemeiner Form. In der Gleichung dürfen nur die vier Widerstände, die Spannungsquelle U_0 und den Faktor α vorkommen.
- (c) Bestimmen Sie den Faktor $\alpha,$ bei dem $I_0=0$ wird.

Gegeben sei die folgende Schaltung:

- (a) Geben Sie zwei Maschengleichungen und eine Knotengleichung, die das Verhalten dieser Schaltung beschreiben.
- (b) Bestimmen Sie U_a in allgemeiner Form. In der Gleichung dürfen keine Ströme vorkommen.
- (c) Nun sei:
 - $\beta = 100$
 - $U_e = 1V$
 - $U_0 = 0,7V$
 - $U_c = 10V$
 - $R_a = 40k\Omega$
 - $R_b = 30k\Omega$
 - $R_c = 40k\Omega$

Bestimmen Sie U_a , I_a , I_b und I_c .