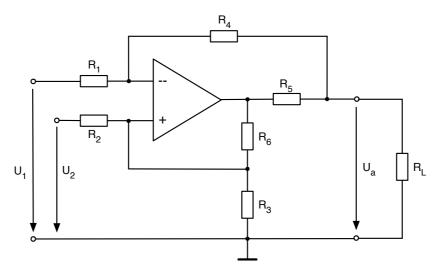
Karlsruhe Institute of Technology (KIT) Institut für Biomedizinische Technik


Prof. Dr. rer. nat. O. Dössel Kaiserstr. 12 / Geb 30.33 Tel.: 0721 / 608 - 42650 Dipl.-Ing. G. Lenis Kaiserstr. 12 / Geb 30.33 Tel.: 0721 / 608 - 45478

Lineare Elektrische Netze WS 2012/2013 Übung 3: Operationsverstärker

Einige der folgenden Aufgaben entstammen alten Klausuren. Darin kommen zum Teil komplexe Zahlen vor. Die komplexen Zahlen werden in der Vorlesung in Kapitel 4 eingeführt und im dritten Tutorium ausführlich behandelt. Um dieses Übungsblatt zu lösen, ist kein tiefergehendes Wissen über die komplexen Zahlen notwendig.

Aufgabe 1 (Klausuraufgabe)


Gegeben ist folgende Operationsverstärkerschaltung (idealer OP):

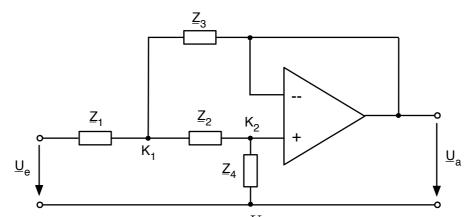
Leiten Sie das Spannungsverhältnis $\underline{\underline{U}}_e$ her. Verwenden Sie \underline{Z} so, als sei es ein Widerstand.

Aufgabe 2

Betrachtet wird die folgende Operationsverstärker-Schaltung, bestehend aus einem idealen Operationsverstärker und den Widerständen R_1 bis R_6 und R_L .

Hinweis: Gehen Sie in allen Operationsverstärker-Aufgaben dieser Vorlesung von vorherrschender Gegenkopplung aus.

- a) Die Schaltung ist nicht belastet ($R_L \to \infty$). Für die Widerstände R_5 und R_6 gilt: $R_5 = 0\Omega, \ R_6 \to \infty$. Berechnen Sie für die entstehende Schaltung die Ausgangsspannung $U_a = f(U_1, U_2)$ als Funktion der beiden Eingangsspannungen U_1 und U_2 .
- b) Finden Sie eine Bedingung für die Widerstände R_1 , R_2 , R_3 und R_4 so, dass die Ausgangsspannung $U_a=f(U_1,U_2)$ aus Aufgabenteil a) nur die Differenz der Eingangsspannungen verstärkt (Beweis). Wie sieht dann die Ausgangsspannung $U_a=f(U_1,U_2)$ aus?
- c) Nun ist R_6 endlich und R_5 von Null verschieden, es gilt $R_1 = R_4 = R_6$ und $R_2 = R_3$, U_2 wird mit Masse verbunden. Aus dieser Schaltung soll eine Konstantstromquelle entstehen, d.h. der Ausgangsstrom I_a soll unabhängig von der Ausgangsspannung sein.

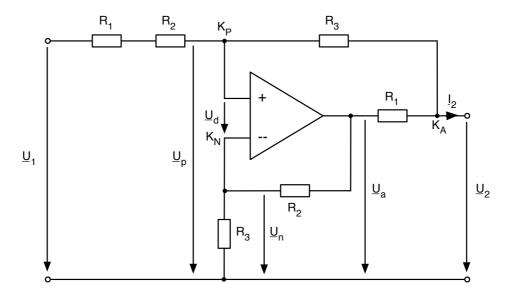

Berechnen Sie zunächst den Ausgangsstrom $I_a = f(U_1, U_a)$ bei angeschlossener Last R_L .

Wie muss nun R_2 gewählt werden, damit eine Konstantstromquelle vorliegt?

Hinweis: Betrachten Sie die Knoten K_1 , K_2 und K_3 , bestimmen Sie die Ströme und finden Sie dadurch $I_a = f(U_1, U_a)$.

Aufgabe 3 (Klausuraufgabe)

a) Berechnen Sie das Spannungsverhältnis $\frac{\underline{U}_a}{\underline{U}_e}$ in Abhängigkeit von \underline{Z}_1 , \underline{Z}_2 , \underline{Z}_3 und \underline{Z}_4 . Verwenden Sie \underline{Z} so, als sei es ein Widerstand.


(Hinweis: Stellen Sie die Knotengleichungen für K_1 und K_2 auf.)

Im folgenden sind \underline{Z}_1 , \underline{Z}_2 , \underline{Z}_3 und \underline{Z}_4 durch folgende Bauteile bestimmt: $R_1 = 33k\Omega$, $R_2 = 1k\Omega$, $C_3 = 10$ nF und $C_4 = 22$ nF. Dabei gilt $\underline{Z}_1 = R_1$, $\underline{Z}_2 = R_2$, $\underline{Z}_3 = 1/(j\omega C_3)$ und $\underline{Z}_4 = 1/(j\omega C_4)$.

b) Setzen Sie die Bauteilwerte in das Spannungsverhältnis $\frac{\underline{U}_a}{\underline{U}_e}$ ein. Vereinfachen Sie das Verhältnis, wenn die Frequenz im Bereich fe[1;500]Hz bleiben soll. Beachten Sie dabei den Zusammenhang ω =2 π f.

Aufgabe 4 (Klausuraufgabe)

Folgende ideale Operationsverstärkerschaltung sei gegeben:

a) Beschreiben Sie, ausgehend von den Knotengleichungen an den Knoten K_P , K_N und K_A , die Abhängigkeit von \underline{I}_2 als Funktion von \underline{U}_1 und \underline{U}_2 . Nehmen Sie an, dass der Ausgang belastet sei.

- b) Welche Bedingung muss gelten, damit \underline{I}_2 unabhängig von \underline{U}_2 wird? c) Nun gelte $\underline{I}_2 = \frac{\underline{U}_1}{\underline{Z}_1} + \frac{\underline{U}_2(\underline{Z}_2 \underline{Z}_3)}{\underline{Z}_1\underline{Z}_3}$. Der Ausgang sei dabei nicht belastet.

Ausserdem gilt $\underline{Z}_2 \neq \underline{Z}_3 \neq \underline{Z}_1$. Bestimmen Sie das Verhältnis $\underline{\underline{U}}_2$. d) Es sei nun \underline{Z}_1 = j Ω , \underline{Z}_2 = -j11 Ω , \underline{Z}_3 = (1-j) Ω . Berechnen Sie nun $\underline{\underline{U}}_2$.