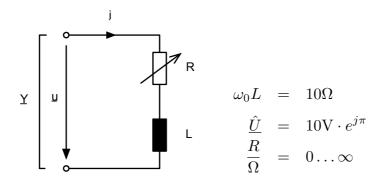

Karlsruhe Institute of Technology (KIT) Institut für Biomedizinische Technik

Prof. Dr. rer. nat. O. Dössel Kaiserstr. 12 / Geb 30.33 Tel.: 0721 / 608 - 42650 Dipl.-Ing. G. Lenis Kaiserstr. 12 / Geb 30.33 Tel.: 0721 / 608 - 42751

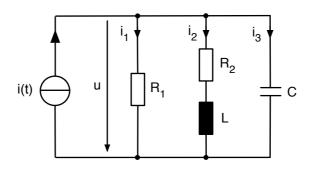
Lineare Elektrische Netze WS 2012/2013 Übung 4: komplexe Zahlen, Ströme, Spannungen, Impedanzen

Aufgabe 1 (Klausuraufgabe)


Gegeben sei folgendes Netzwerk:

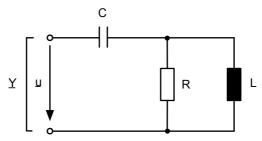
- a) Nennen Sie 3 Regeln beim Umgang mit OP-Schaltungen.
- b) Stellen Sie die Knotengleichung für (K) auf.
- c) Bestimmen Sie \underline{U}_L und \underline{U}_{R2} in Abhängigkeit von \underline{I}_C .
- d) Bestimmen Sie \underline{U}_C und die Phase der Spannung \underline{U}_a am Ausgang für \underline{U}_e = 1mV, R_2 = 250 Ω und C_1 = 63nF bei f = 10kHz. Rechnen Sie zunächst allgemein und setzen Sie erst zum Schluss die Zahlwerte ein.
- e) Wie verhalten sich Amplitude und Phase der Spannung $\underline{\textit{U}}_{a}$, wenn ω gegen Null geht?
- f) Wodurch wird die Amplitude des Ausgangssignals limitiert und welchen Wert kann sie im vorliegenden Fall maximal annehmen?

Aufgabe 2


An der Serienschaltung aus einer verlustfreien Spule der Induktivität L und einem veränderbaren ohmschen Widerstand R liegt eine sinusförmige Wechselspannung \underline{u} mit der komplexen Amplitude $\underline{\hat{U}}$ und der Kreisfrequenz ω_0 .

- a) Wie groß ist die komplexe Amplitude des Klemmenstroms \underline{i} , wenn der Widerstand R auf 0Ω eingestellt wird? Geben Sie den Betrag der Amplitude und den Nullphasenwinkel φ zahlenmäßig an.
 - *Hinweis*: Berechnen Sie den Strom i komplex, d.h. wenden Sie das Ohmsche Gesetz an, wobei der komplexe Strom durch die komplexe Spannung und die komplexe Impedanz ($R = 0\Omega => \underline{Z} = \underline{Z}_L$) definiert wird. Die für die Rechnung benötigten Information finden sich in Kapitel 4.4.
- b) Berechnen Sie allgemein die Admittanz \underline{Y} als Funktion von ω_0 , R und L. Geben Sie Imaginär- (B) und Realteil (G) getrennt an. Hinweis: Die Admittanz \underline{Y} ist das Reziproke zur Impedanz \underline{Z} . Berechnen Sie also zuerst die Impedanz und bilden Sie dann den Kehrwert. Um G und B zu bestimmen, müssen Sie eventuell komplex-konjugiert erweitern.
- c) Für welchen Wert von R nimmt die Schaltung die maximale Wirkleistung P_{max} auf? Wie groß ist dieses P_{max} ?

Aufgabe 3


Gegeben ist folgender Stromkreis mit R_1 = 10 Ω , R_2 = 6 Ω , L = 40 μ H, C = 1 μ F. Die Stromquelle erzeugt den Strom i(t)=8cos(ω t)A mit ω = 2e5s⁻¹.

- a) Bestimmen Sie Real- und Imaginärteil der Stromquelle und der Bauteilimpedanzen.
- b) Berechnen Sie die Spannung u(t) und die Ströme $i_1(t)$, $i_2(t)$ und $i_3(t)$.

Aufgabe 4

Gegeben ist der abgebildete Zweipol aus einer verlustfreien Spule mit der Induktivität L, einem verlustfreien Kondensator mit der Kapazität C und einem ohmschen Widerstand R.

a) Berechnen Sie den komplexen Widerstand $\underline{Z}(j\omega)$, d.h. die Schaltung von links gesehen, den Realteil Re $\{\underline{Z}(j\omega)\}$ und den Imaginärteil Im $\{\underline{Z}(j\omega)\}$ in allgemeiner Form, d.h. in Abhängigkeit von R, C, L und ω .

Der Zweipol wird nun von einer Wechselspannung mit dem komplexen Effektivwert $\underline{U} = (6-j2)V$ und der Kreisfrequenz ω_1 gespeist. Bei ω_1 ist $\underline{Z} = (3+j2)\Omega$.

Bestimmen Sie:

- b) die reelle Amplitude \hat{i} und die Phase φ des Stromes im Kondensator. *Hinweis*: die Grundlagen dafür vermittelt Kap. 4.4.
- c) die vom Zweipol aufgenommene Wirkleistung *P*, Blindleistung *Q* und Scheinleistung *S*.

Hinweis: Lesen Sie eventuell hierzu Kap. 5.5.