Institut für Biomedizinische Technik, Karlsruher Institut für Technologie

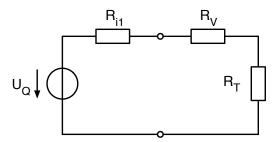
Fritz-Haber-Weg 1 76131 Karlsruhe Tel.: 0721/608-42650

Lineare Elektrische Netze

Leiter: Prof. Dr. rer. nat. Olaf Dössel Übungsleiter: Dipl.-Ing. G. Lenis Tel: 0721 608-42650 Tel: 0721 608-45478 Olaf.Doessel@kit.edu Gustavo.Lenis@kit.edu

 $\frac{\ddot{\mathbf{U}}\mathbf{bungsblatt\ Nr.\ 1:\ Netzwerkanalyse}}{\ddot{\mathbf{A}}\mathbf{quivalente\ Strom-/Spannungsquellen}}$

Ein Messwiderstand mit dem von seiner Umgebungstemperatur T abhängigen Widerstandswert R_T wird über einen temperaturunabhängigen Vorwiderstand R_V von einer Spannungsquelle mit der Quellenspannung U_Q und dem Innenwiderstand R_{i1} gespeist. Die Temperaturabhängigkeit des Widerstandswertes R_T ist durch folgende Gleichung gegeben:



$$R_T = R_0[1 + \alpha(T - T_0)]$$

mit $R_0 = 40\Omega$, $T_0 = 300K$
 $\alpha = 10^{-2}K^{-1} U_Q = 50V$, $R_{i1} = 25\Omega$

Die Erwärmung des Photowiderstandes durch die zugeführte elektrische Energie darf im Rahmen dieser Aufgabe vernachlässigt werden.

- (a) Für welchen Wert von T nimmt R_T die maximale elektrische Leistung P_{RT} auf $(R_V = 35\Omega)$?
 - Hinweis: Nutzen Sie Ihre Kenntnis über P_{RT} , um hinreichende Bedingungen für das Maximum zu erhalten.
- (b) Wie groß muss R_V gewählt werden, wenn die im Messwiderstand umgesetzte Leistung bei keiner Umgebungstemperatur T_G den Grenzwert $P_G = 10W$ übersteigen darf?

Nun soll die Spannungsquelle durch die zu ihr äquivalente Gleichstromquelle ersetzt werden.

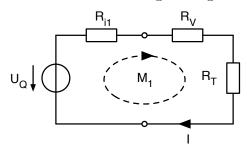
- (c) Berechnen Sie I_Q .
- (d) Bestimmen Sie die maximale Leistung P_{RT} , wenn man stattdessen I_Q zu 3.5A und R_V zu 10Ω setzt und die Schaltung weiterhin bei T_G betreibt.

Lösung:

(a) Die vom Widerstand R_T aufgenommene Leistung ist

$$P_{R_T} = U \cdot I = R_T \cdot I^2$$

Den Strom I erhält man über der Maschengleichung für M_1 :



$$U_Q = (R_{i1} + R_V + R_T) \cdot I$$
bzw.
$$I = \frac{U_Q}{R_{i1} + R_V + R_T}$$

Somit wird P_{R_T} zu

$$P_{R_T} = U_Q^2 \cdot \frac{R_T}{(R_{i1} + R_V + R_T)^2}$$

Ein Extremum der Leistung erhält man als Nullstelle der ersten Ableitung von P_{RT} .

$$\frac{dP_{R_T}}{dR_T} \stackrel{!}{=} U_Q^2 \left(\frac{1 \cdot (R_{i1} + R_V + R_T)^2 - 2R_T \cdot (R_{i1} + R_V + R_T)}{(R_{i1} + R_V + R_T)^4} \right)$$

$$= U_Q^2 \left(\frac{R_{i1} + R_V + R_T - 2R_T}{(R_{i1} + R_V + R_T)^3} \right) = U_Q^2 \frac{R_{i1} + R_V - R_T}{(R_{i1} + R_V + R_T)^3}$$

Der Ausdruck auf der rechten Seite wird zu Null für $R_T = R_{i1} + R_V$. Da $P_R T$ positiv ist und aus dem Wissen, dass $P_R T(R_T)$ für große wie kleine R_T gegen Null geht, schließen wir auf ein Maximum an dieser Stelle (hinreichende Bedingung).

Das Einsetzen der in der Aufgabenstellung angeführten Temperaturabhängigkeit liefert

$$R_0[1 + \alpha(T - T_0)] = R_{i1} + R_V$$

$$\alpha(T - T_0) = \frac{R_{i1} + R_V}{R_0} - 1$$

$$T = \frac{R_{i1} + R_V}{R_0\alpha} - \frac{1}{\alpha} + T_0$$

Für die gegebenen Werte ergibt sich schliesslich das gesuchte T zu:

$$T = 150K - 100K + 300K = 350K$$

sowie

$$R_T(350K) = 40\Omega \left(1 + \frac{350 - 300}{100}\right) = 60\Omega$$

 $P_{R_T}(350K) = (50V)^2 \frac{60\Omega}{(25\Omega + 35\Omega + 60\Omega)^2} \approx 10.42W$

(b) gesucht wird R_V so, dass P_{RT} maximal 10W annimmt.

Aus a) folgt

$$P_{R_T} = U_Q^2 \frac{R_T}{(R_{i1} + R_V + R_T)^2} \le 10W$$

Die maximale Leistung tritt bei Leistungsanpassung auf, d.h. $R_T = R_{i1} + R_V$

$$P_{R_T} = U_Q^2 \frac{R_{i1} + R_V}{(2R_{i1} + 2R_V)^2} = U_Q^2 \frac{R_{i1} + R_V}{4(R_{i1} + R_V)^2}$$

$$= U_Q^2 \frac{1}{4(R_{i1} + R_V)} \le 10W \qquad \frac{U_Q^2}{4 \cdot 10W} \le R_{i1} + R_V$$

$$R_V \le \frac{U_Q^2}{40W} - R_{i1} = 37.5\Omega$$

(c) I_Q ergibt sich über

$$I_Q = \frac{U_Q}{R_{i1}} = \frac{50V}{25\Omega} = 2A$$

$$I_Q = \frac{I_{RT}}{R_{I}}$$

$$R_V = \frac{R_{I}}{R_{I}}$$

und das dazu nötige I_{RT} wiederum über

$$U_{R_{i1}} = U_{R_V} + U_{R_T}$$

$$(I_Q - I_{R_T}) \cdot R_{i1} = I_{R_T} \cdot (R_V + R_T)$$

$$I_{R_T} = I_Q \frac{R_{i1}}{R_V + R_T + R_{i1}}$$

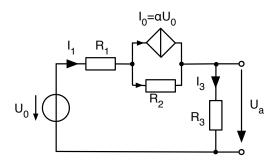
$$= I_Q \frac{R_{i1}}{2R_V + 2R_{i1}}$$

$$= 1.25A$$

bestimmt werden, woraus schliesslich das gesuchte P_{RT} folgt

$$P_{R_T} = I_{R_T}^2 \cdot R_T = (1.25A)^2 \cdot (10\Omega + 25\Omega) = 54.69W$$

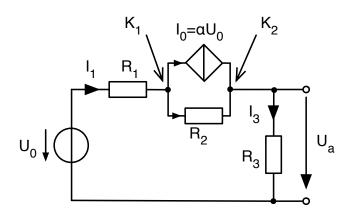
Gegeben sei folgende Schaltung aus idealen Bauelementen, die über eine ideale Gleichspannungsquelle U_0 und eine spannungsgesteuerte Gleichstromquelle αU_0 versorgt wird.



- (a) Berechnen Sie die Spannung U_a im Leerlauffall.
- (b) Bestimmen Sie den Kurzschlussstrom I_K .
- (c) Für welches α wird im Kurzschlussfall in R_1 keine Wirkleistung verbraucht?
- (d) Wie groß ist der Innenwiderstand R_i der Gesamtschaltung?

Lösung:

(a) Die Lösung lässt sich auf zwei Wegen bestimmen. Einmal direkt, und einmal durch Umwandlung der gesteuerten Stromquelle in die zu ihr äquivalente Spannungsquelle.



Als erstes folgt die Berechnung anhand des vorliegenden Layouts. Im Leerlauffall ist U_a gleich der Spannung über dem Widerstand R_3 .

Am Knoten K_1 gilt $I_1-I_0-I_2=0$, an $K_2:I_0+I_2-I_3=0$. Die dritte Gleichung lautet $U_0=I_1R_1+I_2R_2+I_3R_3$

Das Gleichsetzen der ersten beiden liefert $I_1=I_3$ Löst man die zweite nach I_2 auf und setzt dies zusammen mit $I_1=I_3$ in die dritte ein, erhält man

$$U_0 = I_3R_3 + (I_3 - I_0)R_2 + I_3R_3$$

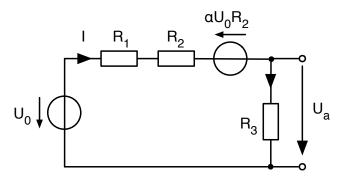
$$U_0 + I_0R_2 = I_3(R_1 + R_2 + R_3)$$

$$I_3 = \frac{U_0 + I_0R_2}{R_1 + R_2 + R_3}$$

Damit lässt sich nun das gesuchte U_a berechnen:

$$U_a = I_3 R_3 = \frac{(U_0 + I_0 R_2)}{R_1 + R_2 + R_3} R_3 = \frac{U_0 + \alpha U_0 R_2}{R_1 + R_2 + R_3} R_3 = \frac{(1 + \alpha R_2) R_3}{R_1 + R_2 + R_3} U_0$$

Wesentlich schneller findet man die Lösung, wenn R_2 als Innenwiderstand der Quelle I_0 interpretiert wird und man diese zuerst in eine Spannungsquelle umwandelt, wobei der neue Spannungspfeil dem alten Strompfeil entgegenläuft (vgl. Abb 1.37). In der verbleibenden Masche gilt



$$U_0 = I(R_1 + R_2 + R_3) - \alpha U_0 R_2$$

$$I = \frac{U_0 + \alpha U_0 R_2}{R_1 + R_2 + R_3} = \frac{1 + \alpha R_2}{R_1 + R_2 + R_3} U_0$$

$$U_a = U_{R_3} = IR_3$$

$$= \frac{1 + \alpha R_2}{R_1 + R_2 + R_3} U_0 R_3$$

(b) Durch den Kurzschluss am Ausgang wird R_3 wirkungslos und kann somit vernachlässigt werden.

Unter Verwendung des zweiten Weges aus a) ergibt sich

$$U_0 = I_K(R_1 + R_2) - \alpha U_0 R_2$$

$$I_K = \frac{U_0 + \alpha U_0 R_2}{R_1 + R_2} = \frac{1 + \alpha R_2}{R_1 + R_2} U_0$$

(c) Die im Kurzschlussfall in R_1 verbrauchte Leistung ist $P_{R_1} = I_K^2 R_1$

aus b) erhält man

$$P_{R_1} = \left(\frac{1 + \alpha R_2}{R_1 + R_2} U_0\right)^2 R_1 \stackrel{!}{=} 0$$

Diese Bedingung wird erfüllt, wenn $1 + \alpha R_2 = 0$, und damit folgt

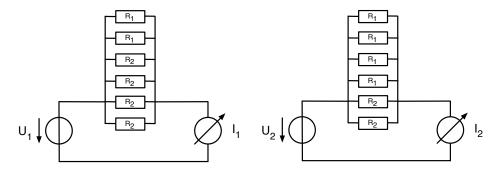
$$\alpha = -\frac{1}{R_2}$$

(d) Der Innenwiderstand der Schaltung lässt sich als Quotient von Leerlaufspannung und Kurzschlussstrom berechnen:

$$R_{i} = \frac{U_{L}}{I_{K}}$$

$$= \frac{\frac{1+\alpha R_{2}}{R_{1}+R_{2}+R_{3}}U_{0}R_{3}}{\frac{1+\alpha R_{2}}{R_{1}+R_{2}}U_{0}}$$

Wie groß sind R_1 und R_2 , wenn bei den folgenden Anordnungen bei einer Gleichspannung von $U_1 = U_2 = 100V$ der Strom $I_1 = 4A$ bzw. $I_2 = 3.2A$ gemessen wurde? Das Amperemeter kann als ideal angenommen werden, d.h. der Innenwiderstand ist gleich Null.



Lösung:

Die linke Schaltung lässt sich folgendermaßen zusammenfassen

$$\frac{1}{R_a} = \frac{2}{R_1} + \frac{4}{R_2} = \frac{2R_2 + 4R_1}{R_1 R_2}$$

$$R_a = \frac{U_1}{I_1} \to \frac{1}{R_a} = \frac{I_1}{U_1}$$

$$\frac{2R_2 + 4R_1}{R_1 R_2} = \frac{4A}{100V}$$

$$2R_2 + 4R_1 = \frac{R_1 R_2}{25\Omega}$$

$$R_1 = \frac{R_1 R_2}{100\Omega} - \frac{1}{2}R_2$$

Analog dazu die rechte Schaltung

$$\frac{1}{R_b} = \frac{4}{R_1} + \frac{2}{R_2} = \frac{4R_2 + 2R_1}{R_1R_2}$$

$$R_b = \frac{U_2}{I_2} \to \frac{1}{R_b} = \frac{I_2}{U_2}$$

$$\frac{4R_2 + 2R_1}{R_1R_2} = \frac{R_1R_2}{31.25\Omega}$$

$$R_1 = \frac{R_1R_2}{62.5} - 2R_2$$

Setz man beide gleich, folgt

$$\frac{R_1 R_2}{100\Omega} - \frac{1}{2} R_2 = \frac{R_1 R_2}{62.5\Omega} - 2R_2$$

$$\frac{R_1}{100\Omega} - \frac{1}{2} = \frac{R_1}{62.5\Omega} - 2$$

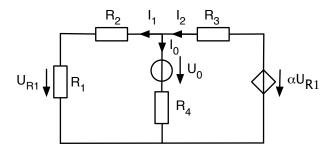
$$\left(\frac{1}{100\Omega} - \frac{1}{62.5\Omega}\right) R_1 = -\frac{3}{2}$$

$$R_1 = -\frac{3}{2} \cdot -\frac{500\Omega}{3} = 250\Omega$$

und Rückeinsetzen in die allererste Gleichung liefert schliesslich

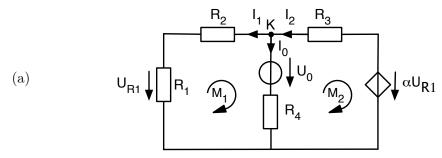
$$\frac{I_1}{U_1} = \frac{2}{R_1} + \frac{4}{R_2}
\frac{4}{R_2} = \frac{I_1}{U_1} - \frac{2}{R_1}
= \frac{4A}{100V} - \frac{2}{250\Omega}
= \frac{4}{125\Omega}
R_2 = 125\Omega$$

Gegeben sei das folgende Widerstandsnetzwerk:



- (a) Geben Sie die zwei Maschengleichungen und die Knotengleichung, die das Verhalten dieser Schaltung beschreiben.
- (b) Bestimmen Sie den Strom I_0 in allgemeiner Form. In der Gleichung dürfen nur die vier Widerstände, die Spannungsquelle U_0 und den Faktor α vorkommen.
- (c) Bestimmen Sie den Faktor α , bei dem $I_0=0$ wird.

Lösung:



$$K : I_2 = I_1 + I_0$$

$$M_1$$
 : $I_1 \cdot R_2 + I_1 \cdot R_1 - I_0 \cdot R_4 - U_0 = 0$

$$M_2$$
: $-\alpha U_{R_1} + I_2 R_3 + U_0 + I_0 R_4 = 0$; $U_{R_1} = I_1 R_1$

(b) Aus M_1 folgt:

$$M_1: \quad I_1 = \frac{U_0 + I_0 R_4}{R_1 + R_2}$$

Das Einsetzen von I_1 und I_2 in M_2 liefert: M_2 :

$$-\alpha \left(\frac{U_0 + I_0 R_4}{R_1 + R_2}\right) \cdot R_1 + \left(\frac{U_0 + I_0 R_4}{R_1 + R_2} + I_0\right) R_3 + U_0 + I_0 R_4 = 0$$

$$I_0\left(\frac{-\alpha R_1 R_4}{R_1 + R_2} + \frac{R_3 R_4}{R_1 + R_2} + R_3 + R_4\right) = U_0\left(\frac{\alpha R_1}{R_1 + R_2} - \frac{R_3}{R_1 + R_2} - 1\right)$$

$$\Rightarrow I_0 = \frac{U_0 \left(\frac{1}{R_1 + R_2} (\alpha R_1 - R_3) - 1\right)}{\frac{R_4}{R_1 + R_2} (R_3 - \alpha R_1) + R_3 + R_4}$$

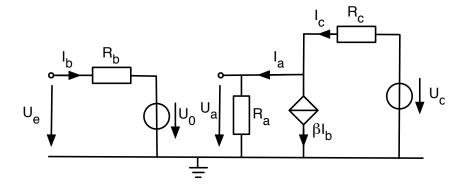
$$I_0 = \frac{U_0 (R_1 (\alpha - 1) - R_2 - R_3)}{R_4 (R_3 - \alpha R_1) + (R_1 + R_2)(R_3 + R_4)}$$

(c) I_0 verschwindet beim folgenden Faktor α :

$$I_0 = 0 \Leftrightarrow R_1(\alpha - 1) - R_2 - R_3 = 0$$

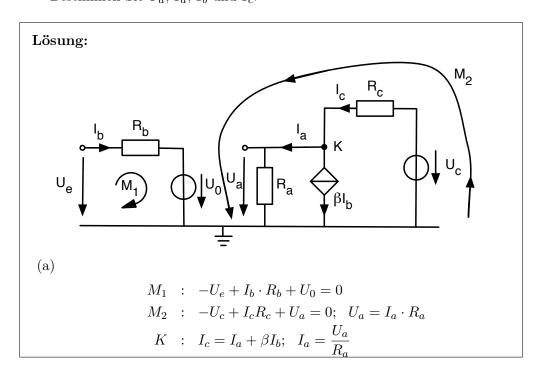
$$\Rightarrow \alpha = 1 + \frac{R_2 + R_3}{R_1}$$

Gegeben sei die folgende Schaltung:



- (a) Geben Sie zwei Maschengleichungen und eine Knotengleichung, die das Verhalten dieser Schaltung beschreiben.
- (b) Bestimmen Sie U_a in allgemeiner Form. In der Gleichung dürfen keine Ströme vorkommen.
- (c) Nun sei:
 - $\beta = 100$
 - $U_e = 1V$
 - $U_0 = 0,7V$
 - $U_c = 10V$
 - $R_a = 40k\Omega$
 - $R_b = 30k\Omega$
 - $R_c = 40k\Omega$

Bestimmen Sie U_a , I_a , I_b und I_c .



(b) Aus M_1 folgt:

$$M_1 : I_b = \frac{U_e - U_0}{R_b}$$

Aus K und M_1 folgt:

$$K : I_c = \frac{U_a}{R_a} + \beta \cdot \frac{(U_e - U_0)}{R_b}$$

Dadurch gilt für U_a Folgendes:

$$U_a = U_c - I_c \cdot R_c$$

$$= U_c - R_c \left(\frac{U_a}{R_a} + \beta \cdot \frac{(U_e - U_0)}{R_b} \right)$$

$$U_a + \frac{R_c}{R_a} \cdot U_a = U_c - \beta \cdot \frac{R_c}{R_b} \cdot (U_e - U_0)$$

$$U_a = \left(\frac{R_a}{R_a + R_c} \right) \left(U_c - \beta \cdot \frac{R_c}{R_b} \cdot (U_e - U_0) \right)$$

(c) Einsetzen in die obige Gleichung liefert:

$$U_a = \left(\frac{40}{40+40}\right) \left(10V - 100 \cdot \frac{40}{30} \cdot (1V - 0, 7V)\right)$$

$$U_a = -15V$$

Einsetzen in die für I_b bestimmte Gleichung liefert:

$$I_b = \frac{U_e - U_0}{R_b} = \frac{1V - 0.7V}{30k\Omega}$$

$$I_b = 10\mu A$$

Für I_a gilt Folgendes:

$$I_a = \frac{U_a}{R_a} = \frac{-15V}{40k\Omega}$$

$$I_a = -375\mu A$$

Für I_c gilt Folgendes:

$$I_c = I_a + \beta \cdot I_b$$
$$I_c = 625\mu A$$