Institut für Biomedizinische Technik, Karlsruher Institut für Technologie

Fritz-Haber-Weg 1 76131 Karlsruhe Tel.: 0721/608-42650

Lineare Elektrische Netze

Leiter: Prof. Dr. rer. nat. Olaf Dössel Übungsleiter: Dipl.-Ing. G. Lenis Tel: 0721 608-42650 Tel: 0721 608-45478 Olaf.Doessel@kit.edu Gustavo.Lenis@kit.edu

 $\frac{\hbox{$\ddot{$}$Ubungsblatt Nr. 0: Differential- und Integral$ $rechnung, lineare Algebra,}}{\hbox{komplexe Zahlen und Analyse einfacher Widerstandsnetzwerke}}$

- (a) Gegeben seien die folgenden reellwertigen Funktionen
 - $f_1(x) = \frac{2}{4 + (x \frac{1}{x})^2}, x \in \Re$
 - $f_2(x) = \frac{\left(\frac{1}{x} x\right)}{4 + \left(x \frac{1}{x}\right)^2}$

Bestimmen Sie die folgenden Werte für die zwei Funktionen:

•

$$\lim_{x\to 0} f_i(x)$$

•

$$\lim_{x\to\infty} f_i(x)$$

- Alle Nullstellen von $f_i(x)$
- Alle Extremwerte (Maxima/Minima) von $f_i(x)$
- (b) Der mittlere Funktionswert einer reell wertigen Funktion im Invervall $(x_0; x_o + T)$ ist folgendermaßen definiert:

$$\overline{f} = \frac{1}{T} \int_{x_0}^{x_0 + T} f(x) dx$$

Bestimmen Sie den mittleren Funktionswert der folgenden Funktionen:

- $f(x) = A \cdot cos(x) \cdot cos(x + \varphi)$; $T = 2\pi$; x_0, φ beliebig aber fest
- $f(x) = a \cdot x + b$; T, x_0 , a, b beliebig aber fest
- $f(x) = e^{-a \cdot x}$; $x_0 = 0$; $T \to \infty$; a > 0 beliebig aber fest

Lösung:

(a) Für $f_1(x)$ gilt

•

$$\lim_{x \to 0} f_1(x) = 0$$

•

$$\lim_{x \to \infty} f_1(x) = 0$$

- Nullstellen: $x_1 = 0 \Rightarrow f(x_1) = 0$
- Maxima: $x_1 = 1 \Rightarrow f(x_1) = \frac{1}{2}$; $x_2 = -1 \Rightarrow f(x_2) = \frac{1}{2}$
- Minima: $x_1 = 0 \Rightarrow f(x_1) = 0$

Für $f_2(x)$ gilt:

•

$$\lim_{x \to 0} f_2(x) = 0$$

•

$$\lim_{x \to \infty} f_2(x) = 0$$

- Nullstellen: $x_1=0 \Rightarrow f(x_1)=0; \quad x_2=1 \Rightarrow f(x_2)=0;$ $x_3=-1 \Rightarrow f(x_3)=0$
- Maxima: $x_1 = \sqrt{2} 1 \Rightarrow f(x_1) = \frac{1}{4}$; $x_2 = -1 \sqrt{2} \Rightarrow f(x_2) = \frac{1}{4}$
- Minima: $x_1 = \sqrt{2} + 1 \Rightarrow f(x_1) = -\frac{1}{4}$; $x_2 = 1 \sqrt{2} \Rightarrow f(x_2) = -\frac{1}{4}$
- (b) Für die mittleren Funktionswerte gilt:
 - $\overline{f} = \frac{1}{2} \cdot A \cdot cos(\varphi)$
 - $\bullet \ \overline{f} = a(\frac{1}{2}T + x_0) + b$
 - $\overline{f} = 0$

(a) Gegeben sei das folgende lineare Gleichungssystem:

$$x + 3y + 5z = 2$$
$$-x - 2y + 4z = 5$$
$$2x - 3y + z = 13$$

Finden Sie die Lösung des Gleichungssystems

(b) Nun soll für ein ähnliches Problem lieber die Vektor- Matrix- Notation verwendet werden:

$$\underline{A} \cdot \underline{x} = \underline{b}$$

mit

$$\underline{A} = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\underline{b} = \begin{bmatrix} 8 \\ 5 \\ 2 \end{bmatrix}$$

Bestimmen Sie die Determinante der Matrix \underline{A} .

Besitzt dann das Gleichungssystem eine eindeutige Lösung?

Finden Sie die Lösung des Gleichungssystems \underline{x} über die Inverse der Matrix $\underline{A}.$

Lösung:

(a) Die Lösung des linearen Gleichungssystem lautet:

$$\begin{array}{rcl}
x & = & 3 \\
y & = & -2 \\
z & = & 1
\end{array}$$

(b) Für die Determinante der Matrix \underline{A} gilt:

$$det(\underline{A}) = 1$$

Dadurch existiert die inverse der Matrix \underline{A} und eine eindeutige Lösung des Gleichungssystems auch.

Für die Inverse von \underline{A} gilt:

$$\underline{A}^{-1} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 2 & 0 \\ 0 & -1 & 2 \end{bmatrix}$$

Für den Lösungsvektor \underline{x} gilt:

$$\underline{x} = \underline{A}^{-1} \cdot \underline{b} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Gegeben sei die imaginäre Einheit j. Für die imaginäre Einheit j gilt: $j^2 = -1$. Man kann mit dieser imaginären Einheit j ganz normal rechnen, als ob sie eine Variable so wie x oder y wäre. Man muss nur beachten, wenn der Term j^2 auftritt so muss man ihn durhe eine -1 ersetzen und dann weiterrechnen.

Beispiel:

$$(2+3j)(2-3j) = 4-6j+6j-9j^{2}$$
$$= 4+0-9(-1)$$
$$= 13$$

- (a) Zeigen Sie die folgenden Korrespondenzen
 - $\bullet \ j^3 = -j$
 - $\frac{1}{1+j} = \frac{1}{2}(1-j)$
 - Die Gleichung $x^2 2x + 26 = 0$ hat die zwei Lösungen: $x_1 = 1 + 5j$; $x_2 = 1 5j$
- (b) Bringen Sie die folgende Terme in die Form x + jy:
 - i) (a+jb)(c+jd)
 - ii) $\frac{1}{a+il}$
 - iii) $\frac{a+jb}{c+jd}$

Lösung:

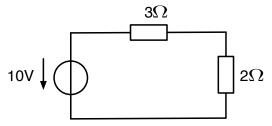
(b) Für die vorgegebenen Terme gilt:

i)
$$(a+jb)(c+jd) = (ac-bd) + j(ad+bc)$$

ii)
$$\frac{1}{a+jb} = \frac{a}{a^2+b^2} + j\frac{-b}{a^2+b^2}$$

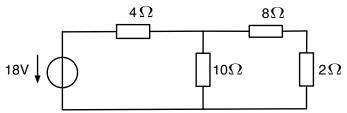
iii)
$$\frac{a+jb}{c+jd} = \frac{ac+bd}{c^2+d^2} + j\frac{bc-ad}{c^2+d^2}$$

(a) Gegeben sei die folgende Schaltung:



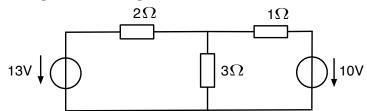
Bestimmen Sie Folgendes:

- $\bullet\,$ Den aus der Quelle fließenden Strom I.
- \bullet Die von der Quelle abgegebene Leistung P.
- Die am 2Ω -Widerstand abfallende Spannung U_2 .
- (b) Gegeben sei die folgende Schaltung:



Bestimmen Sie Folgendes:

- Den durch den 2Ω -Widerstand fließenden Strom I_2 und die dort umgesetzte Leistung P_2 .
- Die am 4Ω -Widerstand abfallende Spannung U_4 .
- (c) Gegeben sei die folgende Schaltung:



Bestimmen Sie den durch den 3Ω -Widerstand fließenden Strom I_3 .

Lösung:

- (a) Für die Schaltung gilt Folgendes:
 - I = 2A
 - P = 20W
 - $U_2 = 4V$
- (b) Für die Schaltung gilt Folgendes:
 - $I_2 = 1A$
 - $P_2 = 2W$
 - $U_4 = 8V$
- (c) Für die Schaltung gilt:
 - $I_3 = 3A$