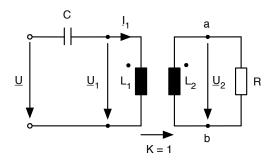
Institut für Biomedizinische Technik, Karlsruher Institut für Technologie

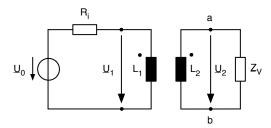
Fritz-Haber-Weg 1 76131 Karlsruhe Tel.: 0721/608-42650


Lineare Elektrische Netze

Leiter: Prof. Dr. rer. nat. Olaf Dössel Übungsleiter: Dipl.-Ing. G. Lenis Tel: 0721 608-42650 Tel: 0721 608-45478 Olaf.Doessel@kit.edu Gustavo.Lenis@kit.edu

Übungsblatt Nr. 8: Transformatoren

Aufgabe 1


Die Abbildung zeigt einen verlustlosen Transformator ohne Streuung. Am Eingang wird ein Wechselstrom mit veränderbarer Frequenz ω angelegt.

- (a) Wie lautet die komplexe Eingangsimpedanz \underline{Z} als Funktion von $L_1,\,L_2,\,R,\,C$ und ω ?
- (b) Wie lautet die Resonanzfrequenz $\omega_0 = f(L_1, L_2, R, C)$, bei der die Eingangsimpedanz \underline{Z} rein reell wird.
- (c) Zeichnen Sie das Ersatzschaltbild des Transformators in der Abbildung unter Verwendung von nur drei Elementen und bestimmen Sie deren Wert.
- (d) Im folgenden sei $\omega = \omega_0$, d.h. die Schaltung wird bei Resonanz betrieben. Berechnen Sie die in der Schaltung umgesetzte Wirkleistung.

Aufgabe 2

Eine Last $\underline{Z}_v = R_v + jX_v$ soll mittels eines verlustlosen, streulosen Transformators an eine Spannungsquelle mit der Quellenspannung \underline{U}_0 und dem Innenwiderstand R_i angepasst werden.

- (a) Berechnen Sie bei sekundärem Kurzschluss den Kurzschlussstrom \underline{I}_K (Zählpfeil von a nach b)
- (b) Berechnen Sie bei sekundärem Leerlauf die Ausgangsspannung \underline{U}_{a0} an den Klemmen a und b.
- (c) Berechnen Sie bezüglich der Klemmen a und b die komplexe Innenimpedanz der Schaltung.
- (d) Geben Sie bezüglich der Klemmen a und b die Ersatzspannungsquellenschaltung an.

Vom Transformator und der Spannungsquelle seien folgende Daten bekannt: $L_1=10mH,~L_2=100mH,~R_i=2\Omega,~f=15.916Hz.$

(e) Mit Hilfe welcher Bauelemente der Last kann eine Leistungsanpassung erfolgen?

Geben Sie die Werte der Bauelemente an.

(f) Berechnen Sie den Wirkungsgrad der Schaltung $\eta = \frac{P_v}{P_{ges}}$ für f = 15.916 Hz.