

Optik

1. Übung Optik und Festkörperelektronik

Lichttechnisches Institut (LTI)

Vorlesungsbetreuung

- Henning Mescher
 - LTI, Geb. 30.34, R118.2
 - 0721 / 608 47742
 - henning.mescher@kit.edu
- Benjamin Fritz
 - LTI, Geb. 30.34, R218
 - 0721 / 608 42547
 - benjamin.fritz@kit.edu

- Markus Katona
 - LTI, Geb. 30.34, R024
 - 0721 / 608 42543
 - markus.katona@kit.edu

2

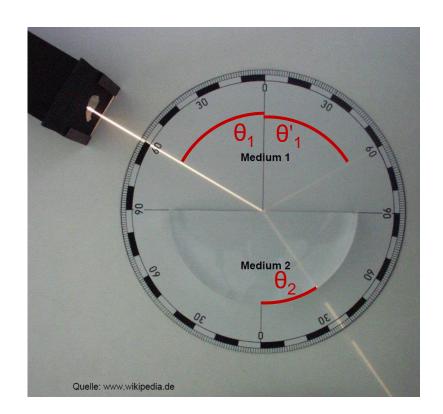
Zusammenfassung

In der Vorlesung wurden u.a. die folgenden Themen behandelt:

- Reflexion, Brechung, Absorption (Aufgabe 1 & 2)
- Polarisation (Aufgabe 3)
- Spiegel & Linsen (Aufgabe 4 & 5)
- Beugung (Aufgabe 6)

Reflexion, Brechung, Absorption

- Energieerhaltung
 - Reflexionsgrad R
 - Transmissionsgrad T
 - Absorptionsgrad A


$$R + T + A = 1$$

Reflexionsgesetz

$$\theta_1 = \theta'_1$$

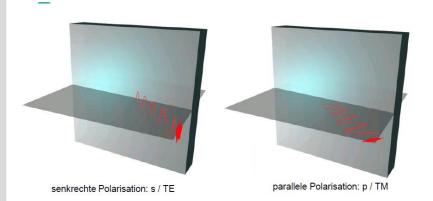
Brechungsgesetz

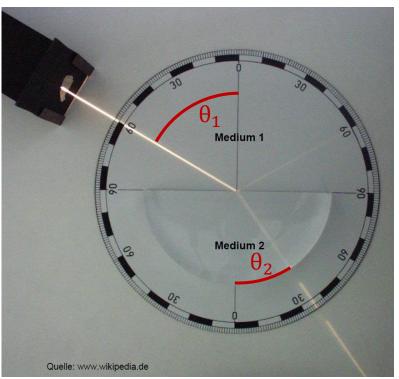
$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

Beer Lambert Gesetz

$$I(d, \lambda) = I_0 e^{-\alpha(\lambda)d} \to \tau = \frac{I(d)}{I_0} = e^{-\alpha(\lambda)d}$$

Reflexion, Brechung, Absorption

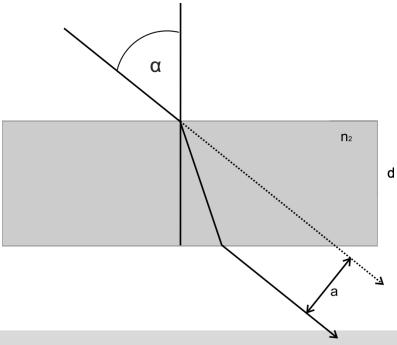



Fresnel-Formeln

$$R_{\theta=0} = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

$$R_{TE} = R_S = \left(\frac{\sin(\theta_1 - \theta_2)}{\sin(\theta_1 + \theta_2)}\right)^2$$

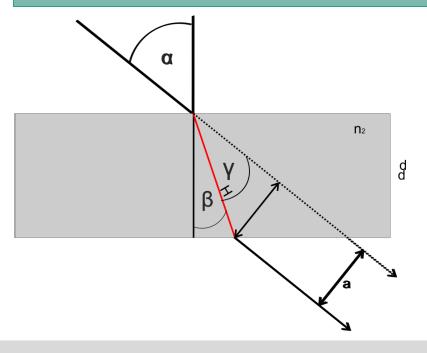
$$R_{TM} = R_p = \left(\frac{\tan(\theta_1 - \theta_2)}{\tan(\theta_1 + \theta_2)}\right)^2$$


5

A1: Glasplatte

Ein monochromatischer Lichtstrahl (Wellenlänge = 550 nm) treffe unter einem Winkel α auf eine von Luft (n = 1) umgebene planparallele Glasplatte und werde durch die Platte um einen Abstand *a* versetzt.

a) Skizzieren Sie den Aufbau!



A1: Glasplatte

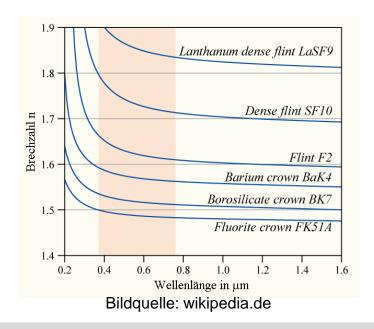
Ein monochromatischer Lichtstrahl (Wellenlänge = 550 nm) treffe unter einem Winkel α auf eine von Luft (n = 1) umgebene planparallele Glasplatte und werde durch die Platte um einen Abstand *a* versetzt.

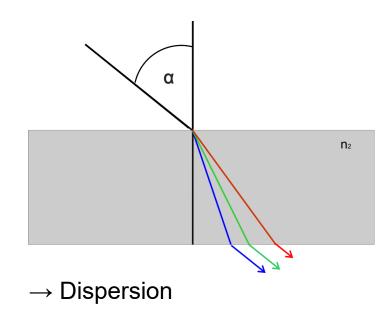
b) Leiten Sie einen Ausdruck für den Versatz a in Abhängigkeit von α und dem Winkel des gebrochenen Strahls β her!

Gesucht: $a(\alpha, \beta)$

$$H = \frac{d}{\cos(\beta)} = \frac{a}{\sin(\gamma)}$$

Unter Beachtung von $\gamma = \alpha - \beta$ folgt:

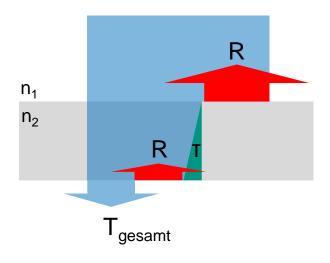

$$a = \frac{d \cdot \sin(\alpha - \beta)}{\cos(\beta)}$$


A1: Glasplatte

Ein monochromatischer Lichtstrahl (Wellenlänge = 550 nm) treffe unter einem Winkel α auf eine von Luft (n = 1) umgebene planparallele Glasplatte und werde durch die Platte um einen Abstand *a* versetzt.

c) Erklären Sie qualitativ mithilfe einer Skizze was passiert, wenn man die Platte mit einem weißen Lichtstrahl durchleuchtet!

Zusammenfassung


In der Vorlesung wurden u.a. die folgenden Themen behandelt:

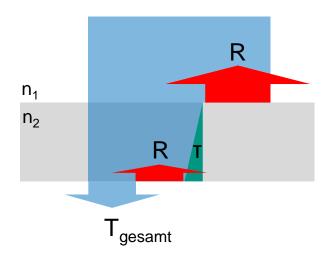
- Reflexion, Brechung, Absorption (Aufgabe 1 & 2)
- Polarisation (Aufgabe 3)
- Spiegel & Linsen (Aufgabe 4 & 5)
- Beugung (Aufgabe 6)

Gegeben sei der Glasfilter OG570 (siehe Datenblatt in Ilias) von Schott mit einer Dicke von exakt 2 mm. Der in Luft befindliche Filter wird mit inkohärentem, unpolarisiertem Licht bestrahlt.

a) Bestimmen Sie den Anteil des transmittierten Lichts bei senkrechtem Einfall und einer Wellenlänge von 550 nm, 570 nm sowie 590 nm. Mehrfachreflexionen sind vernachlässigbar.

Transmittierter Lichtanteil

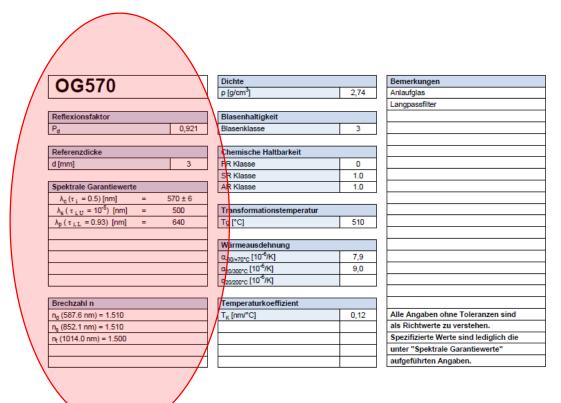
Reflexion


Absorption

$$T_{gesamt} = (1 - R) \cdot \tau \cdot (1 - R)$$

Gegeben sei der Glasfilter OG570 (siehe Datenblatt in Ilias) von Schott mit einer Dicke von exakt 2 mm. Der in Luft befindliche Filter wird mit inkohärentem, unpolarisiertem Licht bestrahlt.

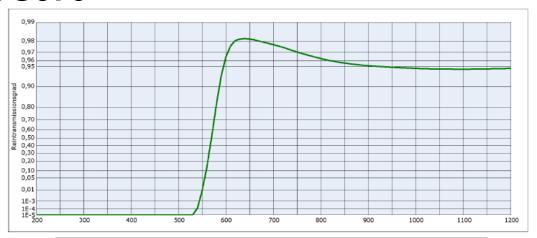
a) Bestimmen Sie den Anteil des transmittierten Lichts bei senkrechtem Einfall und einer Wellenlänge von 550 nm, 570 nm sowie 590 nm. Mehrfachreflexionen sind vernachlässigbar.


$$T_{gesamt} = (1 - R) \cdot \tau \cdot (1 - R)$$

 $R \rightarrow Fresnel-Formeln$

 $\tau \rightarrow \text{Beer-Lambert-Gesetz}$

Datenblatt OG570



Fresnel-Formel:

$$R_{\theta=0} = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

Datenblatt OG570

Reintransmissionsgrad τ _i bei der Referenzdicke d = 3 mm Die Reintransmissionsgrade, tabellarisch und graphisch, sind als Richtwerte zu verstehen.											
λ [nm]	τ	λ [nm]	τί	λ [nm]	τί	λ [nm]	τί	λ [nm]	τ	λ [nm]	τί
200	< 10 ⁻⁵	500	< 10 ⁻⁵	800	0,963	1100	0,946	2200	0,936	3700	0,167
210	< 10 ⁻⁵	510	< 10 ⁻⁵	810	0,961	1110	0,946	2250	0,933	3750	0,173
220	< 10 ⁻⁵	520	< 10 ⁻⁵	820	0,960	1120	0,946	2300	0,935	3800	0,179
230	< 10 ⁻⁵	530	< 10 ⁻⁵	830	0,959	1130	0,946	2350	0,934	3850	0,184
240	< 10 ⁻⁵	540	1,3·10 ⁻⁴	840	0,957	1140	0,946	2400	0,930	3900	0,188
250	< 10 ⁻⁵	550	8,8·10 ⁻³	850	0,956	1150	0,946	2450	0,922	3950	0,189
260	< 10 ⁻⁵	560	0,139	860	0,955	1160	0,946	2500	0,913	4000	0,184
270	< 10 ⁻⁵	570	0,517	870	0,954	1170	0,947	2550	0,911	4050	0,170
280	< 10 ⁻⁵	580	0,816	880	0,953	1180	0,947	2600	0,912	4100	0,150
290	< 10 ⁻⁵	590	0,930	890	0,953	1190	0,947	2650	0,899	4150	0,130
300	< 10 ⁻⁵	600	0,965	900	0,952	1200	0,947	2700	0,829	4200	0,109
310	< 10 ⁻⁵	610	0,976	910	0,951	1250	0,948	2750	0,455	4250	8,8·10 ⁻²
320	< 10 ⁻⁵	620	0,981	920	0,951	1300	0,950	2800	0,354	4300	6,6·10 ⁻²
330	< 10 ⁻⁵	630	0,982	930	0,950	1350	0,953	2850	0,357	4350	4,4·10 ⁻²
340	< 10 ⁻⁵	640	0,982	940	0,950	1400	0,953	2900	0,367	4400	2,5·10 ⁻²
350	< 10 ⁻⁵	650	0,982	950	0,949	1450	0,958	2950	0,368	4450	1,1·10 ⁻²
360	< 10 ⁻⁵	660	0,981	960	0,949	1500	0,963	3000	0,353	4500	4,9·10 ⁻³
370	< 10 ⁻⁵	670	0,980	970	0,948	1550	0,966	3050	0,332	4550	1,9·10 ⁻³
380	< 10 ⁻⁵	680	0,979	980	0,948	1600	0,969	3100	0,305	4600	6,6⋅10 ⁻⁴
390	< 10 ⁻⁵	690	0,978	990	0,948	1650	0,971	3150	0,276	4650	2,5·10-4
400	< 10 ⁻⁵	700	0,977	1000	0,947	1700	0,971	3200	0,251	4700	1,1⋅10 ⁻⁴
410	< 10 ⁻⁵	710	0,976	1010	0,947	1750	0,970	3250	0,229	4750	5,3·10 ⁻⁵
420	< 10 ⁻⁵	720	0,975	1020	0,946	1800	0,969	3300	0,209	4800	2,5·10 ⁻⁵
430	< 10 ⁻⁵	730	0,974	1030	0,946	1850	0,967	3350	0,191	4850	1,2·10 ⁻⁵
440	< 10 ⁻⁵	740	0,972	1040	0,946	1900	0,964	3400	0,173	4900	< 10 ⁻⁵
450	< 10 ⁻⁵	750	0,971	1050	0,946	1950	0,962	3450	0,160	4950	< 10 ⁻⁵
460	< 10 ⁻⁵	760	0,969	1060	0,946	2000	0,960	3500	0,154	5000	< 10 ⁻⁵
470	< 10 ⁻⁵	770	0,968	1070	0,946	2050	0,957	3550	0,154	5050	< 10 ⁻⁵
480	< 10 ⁻⁵	780	0,966	1080	0,946	2100	0,954	3600	0,157	5100	< 10 ⁻⁵
490	< 10 ⁻⁵	790	0,964	1090	0,946	2150	0,950	3650	0,162	5150	< 10 ⁻⁵

Beer-Lambert-Gesetz:

$$\tau = e^{-\alpha(\lambda)d}$$

Gegeben sei der Glasfilter OG570 (siehe Datenblatt in Ilias) von Schott mit einer Dicke von exakt 2 mm. Der in Luft befindliche Filter wird mit inkohärentem, unpolarisiertem Licht bestrahlt.

a) Bestimmen Sie den Anteil des transmittierten Lichts bei senkrechtem Einfall und einer Wellenlänge von 550 nm, 570 nm sowie 590 nm. Mehrfachreflexionen sind vernachlässigbar.

Reintransmissionsgrad τ _i bei der Referenzdicke d = 3 mm Die Reintransmissionsgrade, tabellarisch und gra phisch, sind als Richtwerte zu verstehen.											
λ [nm]	τ_{i}	λ [nm]	τ_i	λ [nm]	τ_{i}	λ [nm]	τ_{i}	λ [nm]	τ_i	λ [nm]	τ_i
200	< 10 ⁻⁵	500	< 10 ⁻⁵	800	0,963	1100	0,946	2200	0,936	3700	0,167
210	< 10 ⁻⁵	510	< 10 ⁻⁵	810	0,961	1110	0,946	2250	0,933	3750	0,173
220	< 10 ⁻⁵	520	< 10 ⁻⁵	820	0,960	1120	0,946	2300	0,935	3800	0,179
230	< 10 ⁻⁵	530	< 10 ⁻⁵	830	0,959	1130	0,946	2350	0,934	3850	0,184
240	< 10 ⁻⁵	540	1,3-10	840	0,957	1140	0,946	2400	0,930	3900	0,188
250	< 10 ⁻⁵	550	8,8-10 ⁻³	850	0,956	1150	0,946	2450	0,922	3950	0,189
260	< 10 ⁻⁵	560	0,139	860	0,955	1160	0,946	2500	0,913	4000	0,184
270	< 10 ⁻⁵	570	0,517	870	0,954	1170	0,947	2550	0,911	4050	0,170
280	< 10 ⁻⁵	580	0,816	880	0,953	1180	0,947	2600	0,912	4100	0,150
290	< 10 ⁻⁵	590	0,930	890	0,953	1190	0,947	2650	0,899	4150	0,130

Gesucht: $T_{qesamt}(\lambda)$, Ohne Mehrfachreflexionen

Gegeben: $n_{Luft} = 1$; $n_{Filter} = 1,51$; $d_0 = 3 mm$; d = 2 mm; λ

$$T_{gesamt} = (1 - R) \cdot \tau \cdot (1 - R)$$

Fresnelschen Formeln:

$$1 - R = 1 - \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2 = 1 - \left(\frac{1 - 1,51}{1 + 1,51}\right)^2 = 0,9587$$

Lambert-Beersche Gesetz:

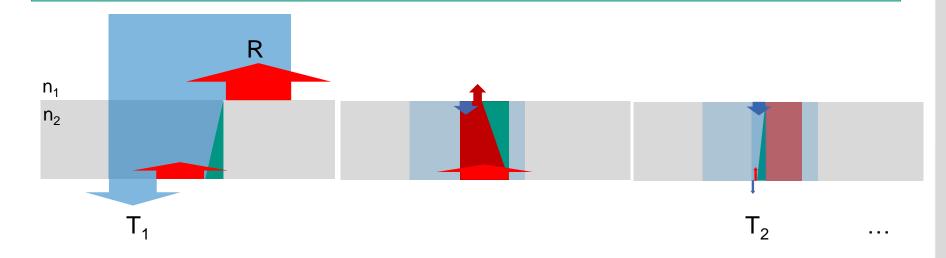
$$\ln(\tau) = -\alpha(\lambda)d$$

$$\frac{\ln(\tau)}{\ln(\tau_0)} = \frac{-\alpha(\lambda)d}{-\alpha(\lambda)d_0}$$

$$\ln(\tau) = \ln(\tau_0)\frac{d}{d_0}$$

$$\tau(d) = \tau_0^{d/d_0}$$

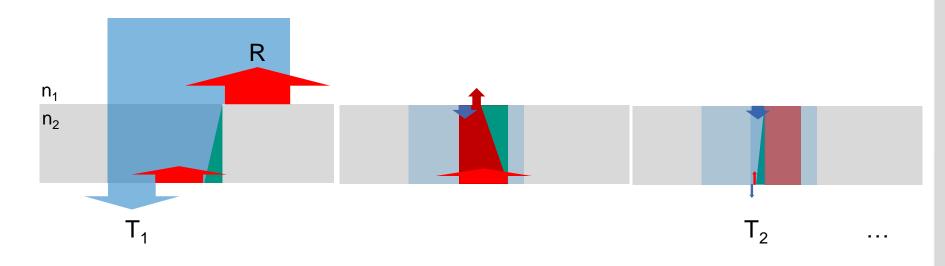
Gegeben sei der Glasfilter OG570 (siehe Datenblatt in Ilias) von Schott mit einer Dicke von exakt 2 mm. Der in Luft befindliche Filter wird mit inkohärentem, unpolarisiertem Licht bestrahlt.


a) Bestimmen Sie den Anteil des transmittierten Lichts bei senkrechtem Einfall und einer Wellenlänge von 550 nm, 570 nm sowie 590 nm. Mehrfachreflexionen sind vernachlässigbar.

$\lambda(nm)$	$\tau_0(d=3mm)$	$\tau(d=2mm)$	$T = (1 - R)^2 \tau$
550	$8.8 \cdot 10^{-3}$	0,043	0,0395
570	0,517	0,644	0,5919
590	0,930	0,953	0,8765

Gegeben sei der Glasfilter OG570 (siehe Datenblatt in Ilias) von Schott mit einer Dicke von exakt 2 mm. Der in Luft befindliche Filter wird mit inkohärentem, unpolarisiertem Licht bestrahlt.

b) Leiten Sie einen formalen Zusammenhang für die Transmission unter Beachtung von Mehrfachreflexionen für den senkrechten Einfall her. Wie unterscheiden sich die Ergebnisse zu a)?



Gesucht: $T_{gesamt}(\lambda)$, unter Mehrfachreflexionen

Gegeben: $n_{Luft} = 1$; $n_{Filter} = 1,51$; $d_0 = 3 mm$; d = 2 mm; λ

$$T_{gesamt} = \sum_{i=0}^{\infty} T_i$$

Gesucht: $T_{gesamt}(\lambda)$, unter Mehrfachreflexionen

Gegeben: $n_{Luft} = 1$; $n_{Filter} = 1,51$; $d_0 = 3 mm$; d = 2 mm; λ

$$T_1 = (1 - R)^2 \cdot \tau$$

$$T_2 = (1 - R)^2 \cdot \tau \cdot R^2 \cdot \tau^2$$

$$T_3 = (1 - R)^2 \cdot \tau \cdot R^4 \cdot \tau^4$$

$$T_{gesamt} = \sum_{i=0}^{\infty} T_i = (1 - R)^2 \cdot \tau \sum_{i=0}^{\infty} (R\tau)^{2n}$$

Da $R\tau$ <1:

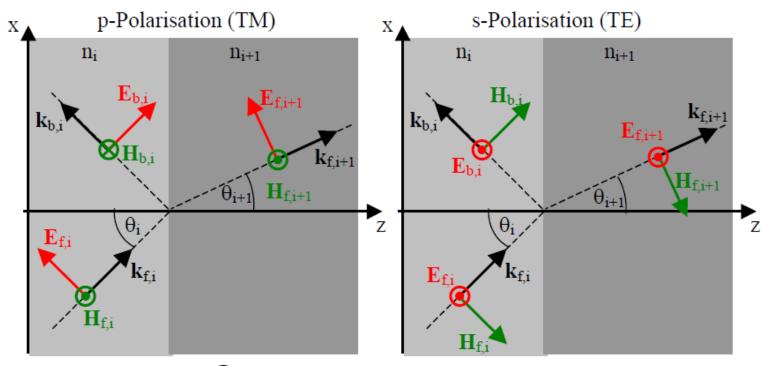
$$T_{gesamt} = \frac{(1-R)^2 \cdot \tau}{1 - (R\tau)^2}$$

Gegeben sei der Glasfilter OG570 (siehe Datenblatt in Ilias) von Schott mit einer Dicke von exakt 2 mm. Der in Luft befindliche Filter wird mit inkohärentem, unpolarisiertem Licht bestrahlt.

Leiten Sie einen formalen Zusammenhang für die Transmission b) unter Beachtung von Mehrfachreflexionen für den senkrechten Einfall her. Wie unterscheiden sich die Ergebnisse zu a)?

$\lambda(nm)$	$ au_0(d=3mm)$	$T_{ohne\ MFR} = (1-R)^2 au$	$T_{mit\ MFR} = rac{(1-R)^2 au}{1-R^2 au^2}$
550	$8.8 \cdot 10^{-3}$	0,0395	0,0395
570	0,517	0,5919	0,5923
590	0,930	0,8765	0,8779

Zusammenfassung



In der Vorlesung wurden u.a. die folgenden Themen behandelt:

- Reflexion, Brechung, Absorption (Aufgabe 1 & 2)
- Polarisation (Aufgabe 3)
- Spiegel & Linsen (Aufgabe 4 & 5)
- Beugung (Aufgabe 6)

a) Was versteht man unter s- und p-Polarisation?

- Vektor zeigt aus Ebene heraus
- **⊗** Vektor zeigt in Ebene hinein

b) Was ist der Brewster-Winkel? Leiten Sie den Brewsterwinkel aus den Fresnelschen Formeln des Reflexionsgrads R_s bzw. R_p her!

$$R_{s} = \left(\frac{\sin(\theta_{1} - \theta_{2})}{\sin(\theta_{1} + \theta_{2})}\right)^{2}$$

$$R_{p} = \left(\frac{\tan(\theta_{1} - \theta_{2})}{\tan(\theta_{1} + \theta_{2})}\right)^{2}$$

b) Was ist der Brewster-Winkel? Leiten Sie den Brewsterwinkel aus den Fresnelschen Formeln des Reflexionsgrads R_s bzw. R_p her!

Berechnung des Brewsterwinkels aus Fresnelschen Formeln mit:

$$R_p = \left(\frac{\tan(\theta_1 - \theta_2)}{\tan(\theta_1 + \theta_2)}\right)^2 = 0$$

Fall 1: $tan(\theta_1 - \theta_2) = 0$

→ Freie Propagation im Raum!

Fall 2:
$$tan(\theta_1 + \theta_2) = \infty$$

$$\theta_1 + \theta_2 = 90^{\circ} \to \theta_2 = 90^{\circ} - \theta_1$$

 $n_1 \sin(\theta_1) = n_2 \sin(\theta_2) = n_2 \sin(90^{\circ} - \theta_1) = n_2 \cos(\theta_1)$

$$\theta_1 = \tan^{-1} \left(\frac{n_2}{n_1} \right)$$

c) Skizzieren Sie qualitativ den Reflexionsgrad für p-polarisiertes Licht beim Übergang von Wasser (n = 1,33) zu Luft (n = 1)!

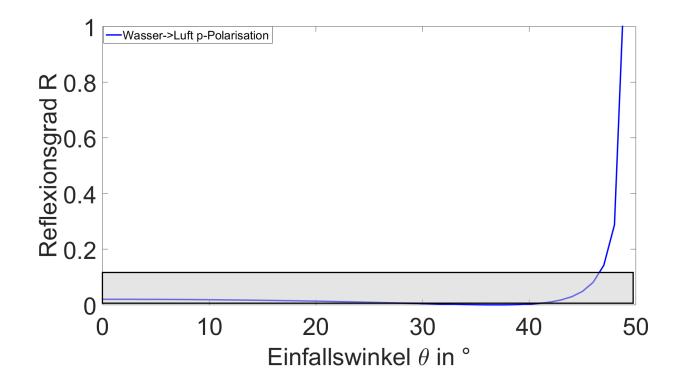
Übergang von optisch dichtem Medium in optisch dünnes Medium:

→ Totalreflexion!

p-Polarisation:

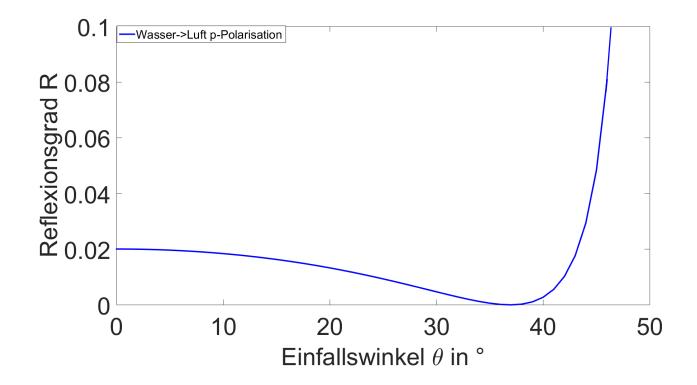
→ Brewster-Winkel!

Wesentliche Eckpunkte:


$$R_0 = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2 = \left(\frac{1,33 - 1}{1,33 + 1}\right)^2 = 0.02$$

$$\theta_{total} = \sin^{-1}\left(\frac{n_2}{n_1}\right) = \sin^{-1}\left(\frac{1}{1,33}\right) = 49^{\circ}$$

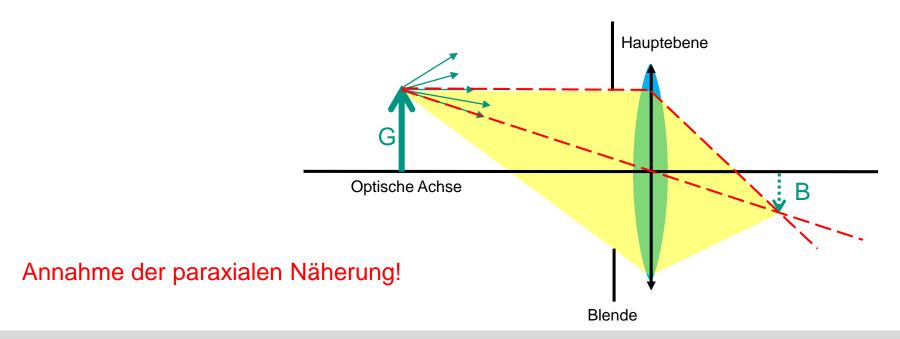
$$\theta_{Brewster} = \tan^{-1}\left(\frac{n_2}{n_1}\right) = \tan^{-1}\left(\frac{1}{1,33}\right) = 37^{\circ}$$



c) Skizzieren Sie qualitativ den Reflexionsgrad für p-polarisiertes Licht beim Übergang von Wasser (n = 1,33) zu Luft (n = 1)!

c) Skizzieren Sie qualitativ den Reflexionsgrad für p-polarisiertes Licht beim Übergang von Wasser (n = 1,33) zu Luft (n = 1)!

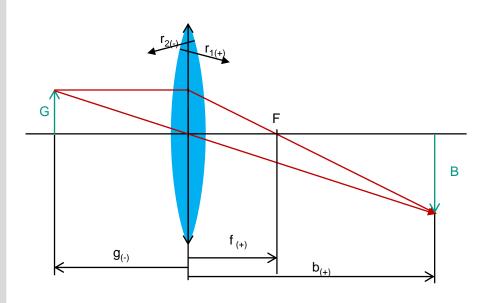
Zusammenfassung


In der Vorlesung wurden u.a. die folgenden Themen behandelt:

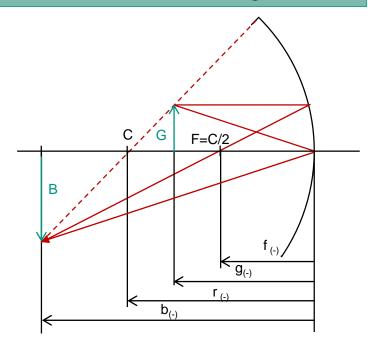
- Reflexion, Brechung, Absorption (Aufgabe 1 & 2)
- Polarisation (Aufgabe 3)
- Spiegel & Linsen (Aufgabe 4 & 5)
- Beugung (Aufgabe 6)

Optische Abbildung

- Jeder Punkt des Objekts reflektiert Licht in alle Richtungen (außer spiegelnde Flächen)
- Für Abbildung relevant ist das Strahlenbündel, das das optische System trifft (Eintrittsblende)
- Zur Konstruktion reicht die Betrachtung von je 2 Strahlen des Fußpunktes und der Objektspitze



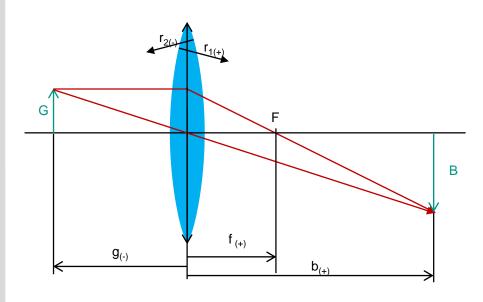
Spiegel und dünne Linsen



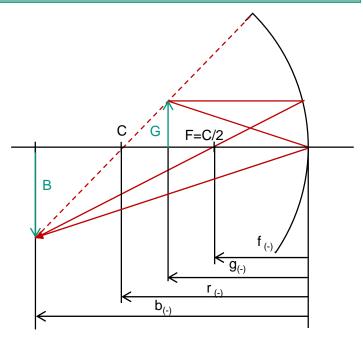
Vorzeichenbehaftete Größen:

- Links der Hauptebene negativ, rechts der Hauptebene positiv
- Oberhalb der Optischen Achse positiv, unterhalb der OA negativ

$$\frac{1}{f} = \frac{n_L - n}{n} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \quad M_{Linse} = \frac{B}{G} = \frac{b}{g}$$


$$f = r/2$$
 $M_{Spiegel} = \frac{B}{G} = -\frac{b}{g}$

Spiegel und dünne Linsen

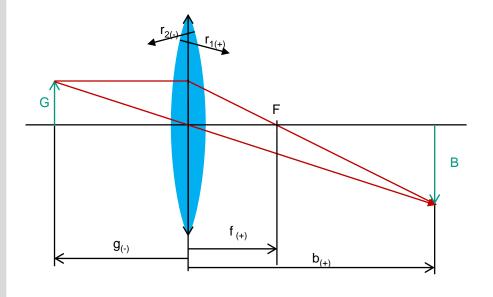

Rechnen mit Vorzeichenkonvention:

- Formel wird nicht verändert
- Beim Einsetzen der Werte werden die VZ übernommen.

Abbildungsgleichung Linse:

$$\frac{1}{f} = \frac{1}{b} - \frac{1}{g}$$

Abbildungsgleichung Spiegel:


$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$$

Spiegel und dünne Linsen

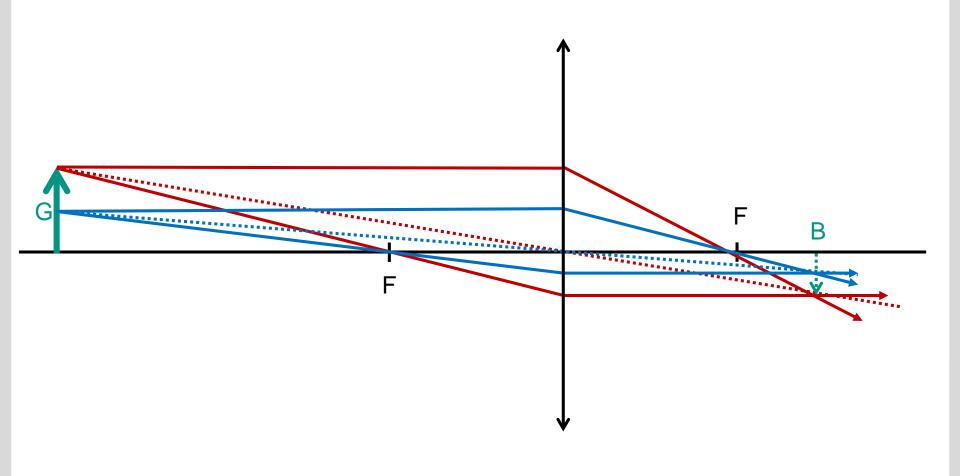
Rechnen mit Vorzeichenkonvention:

- Formel wird nicht verändert
- Beim Einsetzen der Werte werden die VZ übernommen.

Beispiel Sammellinse:

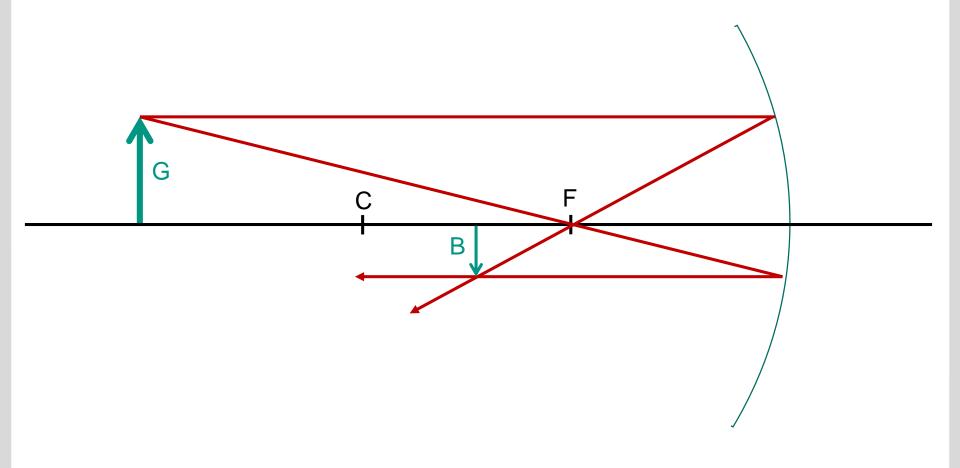
$$f = 4cm, g = -8cm$$

$$\frac{1}{f} = \frac{1}{b} - \frac{1}{a}$$


$$\frac{1}{4cm} = \frac{1}{b} - \frac{1}{-8cm}$$

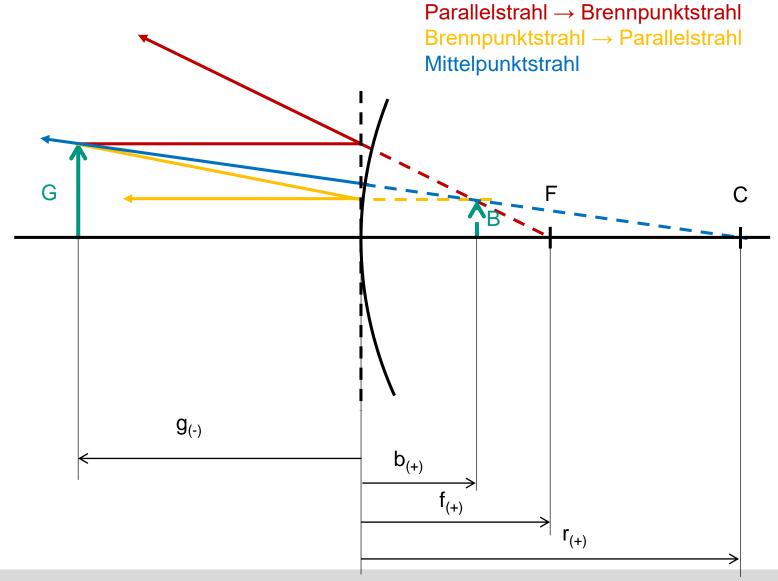
$$\frac{1}{b} = \frac{1}{4cm} + \frac{1}{-8cm}$$

$$b_{(+)} = 8cm$$


Konstruktionsregeln, Sammellinse

Konstruktionsregeln, Sphärischer Spiegel I

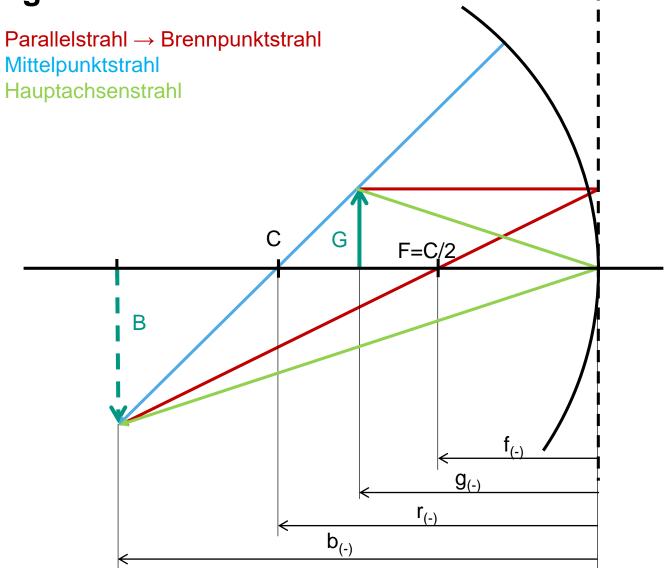
A4: Spiegel


Gegeben ist ein sphärischer Spiegel mit einem Krümmungsradius von |r| = C, C > 0. Skizzieren Sie die Strahlengänge der Bildentstehung und benennen Sie die Eigenschaften (virtuell/reell, vergrößert/verkleinert, seitenrichtig/seitenverkehrt) des Bildes:

a) Für die Verwendung als Wölbspiegel mit einer Gegenstandsweite von $g = -\frac{3}{4}C$.

$$r = C \rightarrow f = C/2$$

A4: Spiegel

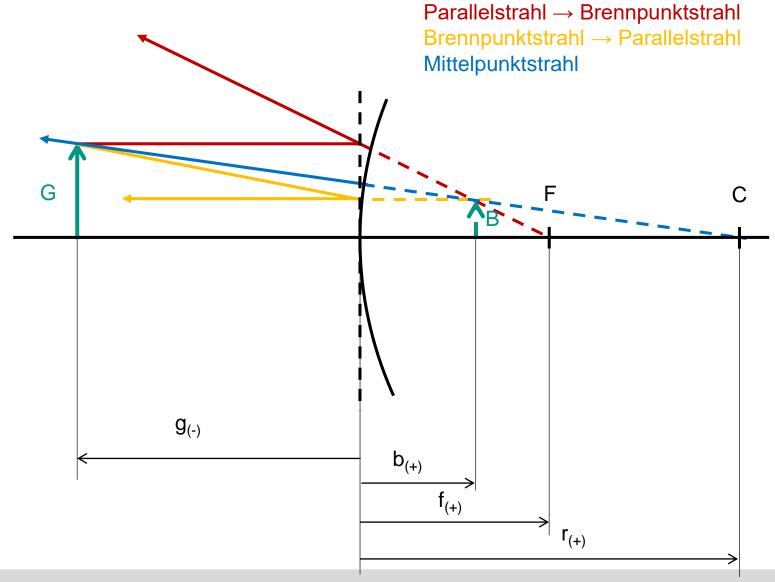


Gegeben ist ein sphärischer Spiegel mit einem Krümmungsradius von |r| = C, C > 0. Skizzieren Sie die Strahlengänge der Bildentstehung und benennen Sie die Eigenschaften (virtuell/reell, vergrößert/verkleinert, seitenrichtig/seitenverkehrt) des Bildes:

b) Für die Verwendung als Hohlspiegel mit einer Gegenstandsweite von $g = -\frac{3}{4}C$.

$$r = -C \rightarrow f = -C/2$$

Gegeben ist ein sphärischer Spiegel mit einem Krümmungsradius von |r| = C, C > 0. Skizzieren Sie die Strahlengänge der Bildentstehung und benennen Sie die Eigenschaften (virtuell/reell, vergrößert/verkleinert, seitenrichtig/seitenverkehrt) des Bildes:

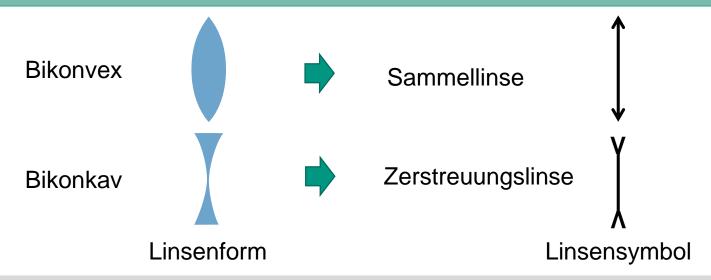

c) Berechnen Sie für den Fall aus Teilaufgabe a) die Bildweite für C = 12cm.

$$r = +12cm$$
 $g = -\frac{3}{4}C = -\frac{3}{4}12cm = -9cm$ $f = \frac{r}{2} = \frac{+12cm}{2} = 6cm$

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$$

$$\frac{1}{b} = \frac{1}{f} - \frac{1}{g} = \frac{g - f}{fg} \rightarrow b = \frac{fg}{g - f} = \frac{6cm \cdot (-9cm)}{-9cm - 6cm} = \frac{-54cm^2}{-15cm} = 3,6cm$$

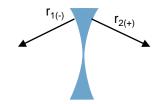
Zusammenfassung

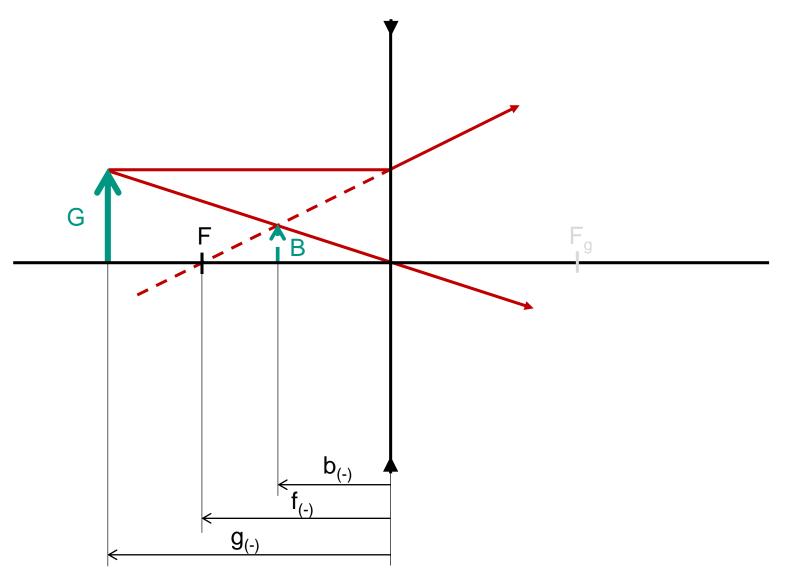

In der Vorlesung wurden u.a. die folgenden Themen behandelt:

- Reflexion, Brechung, Absorption (Aufgabe 1 & 2)
- Polarisation (Aufgabe 3)
- Spiegel & Linsen (Aufgabe 4 & 5)
- Beugung (Aufgabe 6)

Gegeben ist eine dünne Linse mit den Radien $|r_1| = |r_2| = R$, R > 0. Skizzieren Sie die Strahlengänge der Bildentstehung und benennen Sie die Eigenschaften (virtuell/reell, vergrößert/verkleinert, seitenrichtig/seitenverkehrt) des Bildes:

a) Wenn es sich um eine bikonkave Linse handelt bei einer Gegenstandsweite von g = -R und einem Brechungsindex von $n_1 = 1,75!$




Gegeben ist eine dünne Linse mit den Radien $|r_1| = |r_2| = R$, R > 0. Skizzieren Sie die Strahlengänge der Bildentstehung und benennen Sie die Eigenschaften (virtuell/reell, vergrößert/verkleinert, seitenrichtig/seitenverkehrt) des Bildes:

a) Wenn es sich um eine bikonkave Linse handelt bei einer Gegenstandsweite von g = -R und einem Brechungsindex von $n_L = 1,75!$

Bikonkave Linse:
$$r_1 = -R$$
; $r_2 = R$:
$$\frac{1}{f} = \frac{n_2 - n_1}{n_1} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

$$\frac{1}{f} = \frac{1,75 - 1}{1} \left(\frac{2}{-R} \right) = -\frac{3}{2R}$$

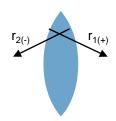
$$f = -\frac{2}{-R}$$

Gegeben ist eine dünne Linse mit den Radien $|r_1| = |r_2| = R$, R > 0. Skizzieren Sie die Strahlengänge der Bildentstehung und benennen Sie die Eigenschaften (virtuell/reell, vergrößert/verkleinert, seitenrichtig/seitenverkehrt) des Bildes:

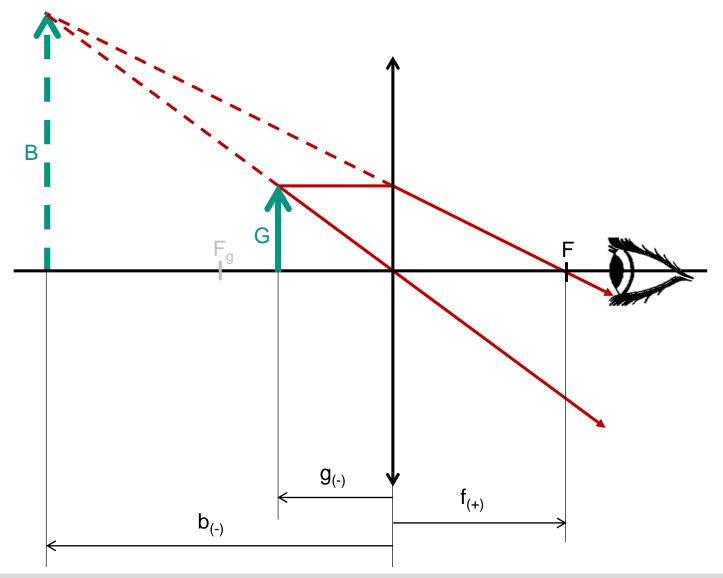
b) Wenn es sich um eine bikonvexe Linse handelt bei einer Gegenstandsweite von g = -R und einem Brechungsindex von $n_L = 4/3!$ Um was für ein optisches Instrument handelt es sich?

$$\frac{1}{f} = \frac{n_2 - n_1}{n_1} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

Gegeben ist eine dünne Linse mit den Radien $|r_1| = |r_2| = R$, R > 0. Skizzieren Sie die Strahlengänge der Bildentstehung und benennen Sie die Eigenschaften (virtuell/reell, vergrößert/verkleinert, seitenrichtig/seitenverkehrt) des Bildes:


 b) Wenn es sich um eine bikonvexe Linse handelt bei einer Gegenstandsweite von g = -R und einem Brechungsindex von n_L = 4/3! Um was für ein optisches Instrument handelt es sich?

Bikonvexe Linse:
$$r_1 = R$$
; $r_2 = -R$:


$$\frac{1}{f} = \frac{n_2 - n_1}{n_1} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

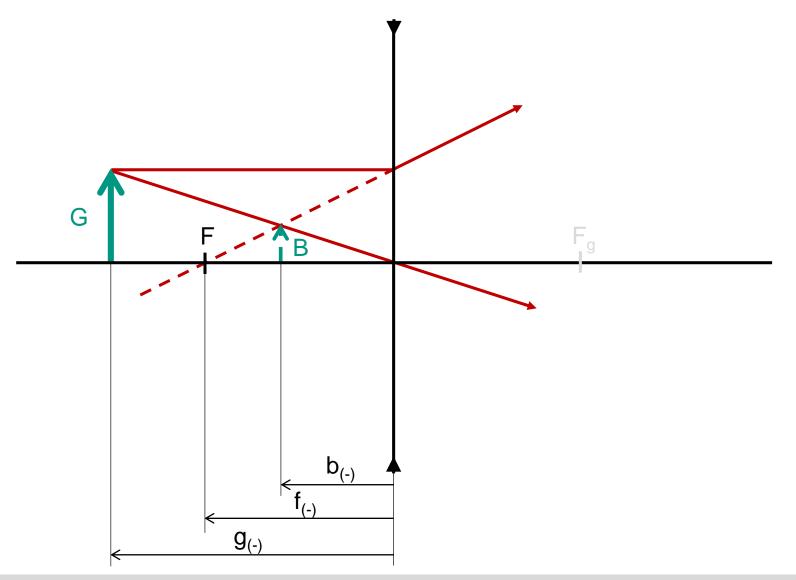
$$\frac{1}{f} = \frac{4/3 - 1}{1} \left(\frac{2}{R} \right) = \frac{2}{3R}$$

$$f = \frac{3}{2}R$$

Gegeben ist eine dünne Linse mit den Radien $|r_1| = |r_2| = R$, R > 0. Skizzieren Sie die Strahlengänge der Bildentstehung und benennen Sie die Eigenschaften (virtuell/reell, vergrößert/verkleinert, seitenrichtig/seitenverkehrt) des Bildes:

Wenn es sich um eine bikonvexe Linse handelt bei einer
 Gegenstandsweite von g = -R und einem Brechungsindex von n₁ = 4/3! Um was für ein optisches Instrument handelt es sich?

Gegeben ist eine dünne Linse mit den Radien $|r_1| = |r_2| = R$, R > 0. Skizzieren Sie die Strahlengänge der Bildentstehung und benennen Sie die Eigenschaften (virtuell/reell, vergrößert/verkleinert, seitenrichtig/seitenverkehrt) des Bildes:


c) Berechnen Sie für den Fall aus Teilaufgabe a) die Bildweite für R=3cm.

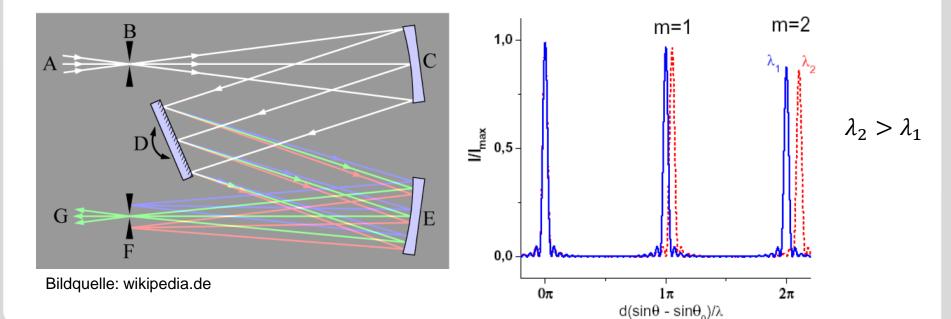
$$g = -R$$
 $f = -\frac{2}{3}R$ \rightarrow $g = -3cm$ $f = -2cm$

$$\frac{1}{f} = \frac{1}{b} - \frac{1}{g}$$

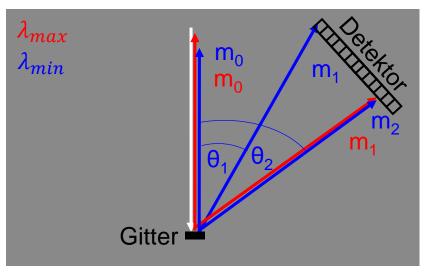
$$\frac{1}{b} = \frac{1}{f} + \frac{1}{g} = \frac{f+g}{fg} \rightarrow b = \frac{fg}{f+g} = \frac{-2cm \cdot (-3cm)}{-2cm + (-3cm)} = \frac{6cm^2}{-5cm} = -1,2cm$$

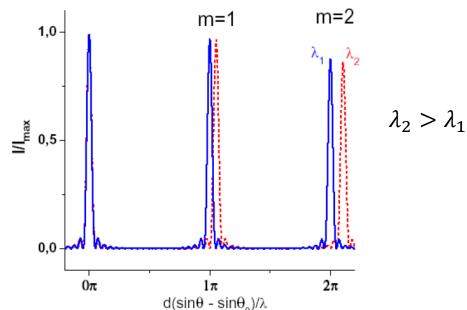
Zusammenfassung

In der Vorlesung wurden u.a. die folgenden Themen behandelt:


- Reflexion, Brechung, Absorption (Aufgabe 1 & 2)
- Polarisation (Aufgabe 3)
- Spiegel & Linsen (Aufgabe 4 & 5)
- Beugung (Aufgabe 6)

Gegeben sei ein Beugungsgitter das zum Messen eines Spektrums verwendet werden soll. Ein Spektralbereich einer bestimmten Ordnung ist nutzbar, wenn der Spektralbereich nicht mit einer anderen Ordnung überlappt. Die kürzeste Wellenlänge einer gegebenen Lichtquelle sei 400 nm. Bestimmen Sie den nutzbaren Spektralbereich in den ersten drei Ordnungen des Beugungsgitters.




Gegeben sei ein Beugungsgitter das zum Messen eines Spektrums verwendet werden soll. Ein Spektralbereich einer bestimmten Ordnung ist nutzbar, wenn der Spektralbereich nicht mit einer anderen Ordnung überlappt. Die kürzeste Wellenlänge einer gegebenen Lichtquelle sei 400 nm. Bestimmen Sie den nutzbaren Spektralbereich in den ersten drei Ordnungen des Beugungsgitters.

Gegeben sei ein Beugungsgitter das zum Messen eines Spektrums verwendet werden soll. Ein Spektralbereich einer bestimmten Ordnung ist nutzbar, wenn der Spektralbereich nicht mit einer anderen Ordnung überlappt. Die kürzeste Wellenlänge einer gegebenen Lichtquelle sei 400 nm. Bestimmen Sie den nutzbaren Spektralbereich in den ersten drei Ordnungen des Beugungsgitters.

Gegeben sei ein Beugungsgitter das zum Messen eines Spektrums verwendet werden soll. Ein Spektralbereich einer bestimmten Ordnung ist nutzbar, wenn der Spektralbereich nicht mit einer anderen Ordnung überlappt. Die kürzeste Wellenlänge einer gegebenen Lichtquelle sei 400 nm. Bestimmen Sie den nutzbaren Spektralbereich in den ersten drei Ordnungen des Beugungsgitters.

Für eine Messung in der m. Ordnung ergibt sich eine Begrenzung des nutzbaren Spektralbereichs durch ein Überlagerung von:

- m. Ordnung der größten Wellenlänge
- (m+1). Ordnung der kleinsten Wellenlänge

$$\sin(\theta) = \frac{m \cdot \lambda}{g}$$

$$\sin(\theta) = \frac{m \cdot \lambda_2}{g} = \frac{(m+1) \cdot \lambda_1}{g}$$

$$m \cdot \lambda_2 = (m+1) \cdot \lambda_1$$

$$\lambda_2 - \lambda_1 = \Delta \lambda = \frac{\lambda_1}{m}$$

Gegeben sei ein Beugungsgitter das zum Messen eines Spektrums verwendet werden soll. Ein Spektralbereich einer bestimmten Ordnung ist nutzbar, wenn der Spektralbereich nicht mit einer anderen Ordnung überlappt. Die kürzeste Wellenlänge einer gegebenen Lichtquelle sei 400 nm. Bestimmen Sie den nutzbaren Spektralbereich in den ersten drei Ordnungen des Beugungsgitters.

Ordnung m	Δλ	Intervall
1	400 nm	400 nm bis 800 nm
2	200 nm	400 nm bis 600 nm
3	133 nm	400 nm bis 533 nm