Lichttechnisches Institut

Karlsruher Institut für Technologie

Prof. Dr. rer. nat. Uli Lemmer

M. Sc. Benjamin Fritz

M. Sc. Henning Mescher

Engesserstraße 13

76131 Karlsruhe

Optik und Festkörperelektronik

2. Übungsblatt

Besprechung: 14. Mai 2020

1. Unschärferelation

- a) Erläutern Sie den Begriff der Unschärferelation.
- b) Mit Hilfe einer neuen Torlinientechnik können beim Fußball die Geschwindigkeit und Position des Balls gleichzeitig gemessen werden. Die Geschwindigkeit des Balls (m = 0,5 kg) kann dabei sogar auf 0,001 $\frac{m}{s}$ genau bestimmt werden. Führt die Unschärferelation zu einer Einschränkung der Messgenauigkeit bei der Ortsbestimmung des Balls?

2. Photoeffekt

- a) In welchem Wellenlängenbereich liegt der sichtbare Teil des Spektrums elektromagnetischer Strahlung?
- b) Wie groß sind die Frequenzen (in Hertz) und Energiequanten (in Elektronenvolt bzw. Joule) einer Rundfunkwelle ($\lambda = 1000$ m), einer UKW-Welle ($\lambda = 3$ m) und weicher Röntgenstrahlung ($\lambda = 10^{-8}$ m)?
- c) Eine Photozelle enthält eine Kaliumkathode ($W_a=2,25$ eV). Berechnen Sie die Grenzfrequenz für das Auftreten des Photoeffekts. Welche Geschwindigkeit haben die schnellsten Elektronen bei Beleuchtung mit UV-Licht ($\lambda=100$ nm)? Wird die Geschwindigkeit bei Strahlung mit halber Wellenlänge doppelt so groß?
- d) Wie groß muss die anglegte Spannung U sein, damit die aus einer Magnesium-Kathode ($W_a = 3,7$ eV) durch Licht mit der Wellenlänge $\lambda = 302$ nm herausgeschlagenen Elektronen gerade nicht die Anode erreichen?
- e) Zur richtigen Belichtung eines Films mit Silberkörnern benötigt man bei $\lambda = 550 \text{ nm}$ etwa 10^{-6} J/m^2 . Wie viele Photonen sind für 1 mm² lichtempfindliche Fläche nötig?

3. Doppelspalt-Experiment

Laserlicht der Wellenlänge 633 nm fällt senkrecht auf einen Doppelspalt mit dem Spaltmittenabstand von d=0,30 mm (siehe Abb. ??). Der Einfluss der Einzelspalte ist vernachlässigbar. Parallel zum Doppelspalt befindet sich im Abstand L=1,00 m ein ebener Schirm.

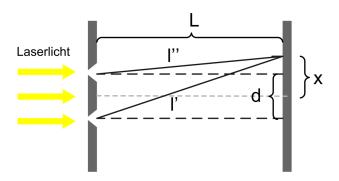


Abb. 1: Skizze zum Doppelspalt-Experiment

- a) Was ist auf dem Schirm zu beobachten? Erläutern Sie, wie das Phänomen entsteht.
- b) Welchen Abstand x haben benachbarte Maxima auf dem Schirm?
- c) Nun fällt Licht eines anderen Lasers auf die gleiche Anordnung, wobei die beiden Maxima 2. Ordnung einen Abstand von 6,8 mm besitzen. Berechnen Sie die Wellenlänge des einfallenden Lichtes.

4. Schrödingergleichung, Wellenfunktion und Wahrscheinlichkeitsdichte

- a) Vergleichen Sie die SCHRÖDINGERgleichung für V(x, t) = 0 mit der Wellengleichung des elektrischen Feldes. Welches sind die wichtigsten Gemeinsamkeiten, wo unterscheiden sich die beiden?
- b) Zeigen Sie, dass ebene Wellen Lösungen der SCHRÖDINGERgleichung für ein zeitlich konstantes Potential sind.
- c) Zeigen Sie, dass eine Überlagerung mehrerer ebener Wellen, die Lösungen der Schrödingergleichung sind, diese ebenfalls löst.