

Ionenleiter und Grenzflächen

10. Übung Optik und Festkörper

Sommersemester 2020 Janis Geppert Institut für Angewandte Materialien – Werkstoffe der Elektrotechnik

Terminplanung

Tag/Monat	April	Mai	Juni	Juli
1		1. Mai Feiertag	Pfingstmontag	
2			V11 FE (8)	V17 FE (14)
3				Ü8 FE (7), Ausgabe T7
4			V12 FE (9)	
5		V4 FE (1)	U5 FE (4), Ausgabe T3	
6		~		Tut 6
7		V5 FE (2), Ausgabe Ü2		V18 FE (15)
8		44 142 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
9			V13 FE (10)	V19 FE (16), (Institutsführung)
10			Ausgabe Ü6/T4	Ausgabe Ü9/T8
11		Tut 1	Fronleichnam	
12		V6 FE (3), Ausgabe Ü3	Brückentag	
13				Tut 7
14		Ü2 FE (1)		V20 FE (17)
15		V7 FE (4), Ausgabe T2	Tut 3	
16				
17				Ü9 FE (8), Ausgabe Ü10
18			V14 FE (11)	
19	R	Ü3 FE (2)	Ü6 FE (5), Ausgabe Ü7/T5	
	VL-Beginn	Ausgabe Ü4		Tut 8
	V1 Optik (1), Ausgabe Ü1	Christi Himmelfahrt		V21 FE (18)
22		V8 FE (5)	Tut 4	
	V2 Optik (2)		V15 FE (12)	V22 FE (19)
24				Ü10 FE (9), VL-Ende
25		Tut 2		
26		V9 FE (6)	Ü7 FE (6) , Ausgabe Ü8/T6	
27				
28	V3 Optik (3)	V10 FE (7)		
29	Deadline TutAnmeldung	Ü4 FE (3), Ausgabe Ü5	Tut 5	
	U1 Optik, Ausgabe T1		V16 FE (13)	
31		Pfingsten		

Wochenende
Feiertag
Vorlesung
Übung
Tutorium
Brückentag

Ausgabe:

Ü/T wird in ILIAS veröffentlicht

Stand:10.06.2020

Infos zur Klausur

Klausurtermin: 21.08.2020, 17:30 Uhr bis 19:30 Uhr

Anmeldebeginn: 14.07.2020

Anmeldeschluss: 14.08.2020, 23:00 Uhr

Abmeldeschluss: 20.08.2020, 23:00 Uhr

1 Klausur
 "Optik und Festkörperelektronik"
 Reine "Festkörperelektronik" wird nicht mehr angeboten

Anmeldung

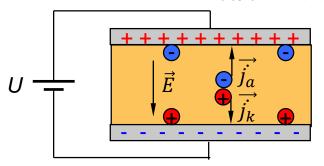
ETEC PO2007: Über QISPOS

ETEC PO2015: Über CAS-Campus

Klausurvorbereitung

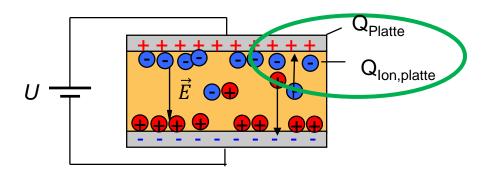
- Relevant sind: Übungen, Tutorien, Vorlesung, Skript
- Fragestunde
 - **1**4.08.2020, 11:30 12:30
 - Wird online unter bekanntem Zoom-Link stattfinden
 - Fragen vorab per Mail an die entsprechende Übungsleiter
 - benjamin.fritz@kit.edu, janis.geppert@kit.edu

Danach werden keine Fragen mehr per Mail beantwortet


Übersicht 10. Übung

Teil 1: Ionenleiter

-> Ionentransport $\overrightarrow{j_{ion}} = f(E)$



Aufgabe 1: Ionenleitfähigkeit

- a) Festkörperleitfähigkeit
- b) Technischer Einfluss
- c) Vergleich Ionenleitfähiger Substanzen

Teil 2: Grenzfläche

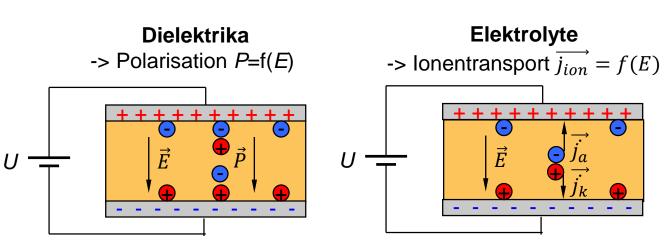
Doppelschicht

Aufgabe 2: Doppelschicht

- a) Helmholzflächen
- b) Stern-Modell
- c) Doppelschichtkapazität

Lehrveranstaltung Optik und Festkörperelektronik

Von Dielektrika zu Ionen-Leitern


Dielektrika

- leiten keine Elektronen (~ 1 freies e⁻ pro cm³)
- Reagieren auf E mit Polarisierung durch Dipole
 - Atomar, ionisch, permanente Dipole
- Moleküle bleiben an ihrem Ort aufgrund starker
 Bindungskräfte

Fermi-Verteilung W ightharpoonup T > 0 KLB leer W_F W_G V_G $V_$

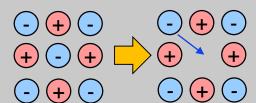
Elektrolyte

- leiten keine Elektronen
- enthalten lonen hoher Beweglichkeit
- Neg. Ionen = Anionen; positive Ionen = Kationen
- Ionen reagieren auf E durch Bewegung von Ionen zur geladenen Elektrode!
 - -> Elektrolyte sind **lonenleiter**!

Merke: ionische Dielektrika können geringe Ionenleitung aufweisen

Ionenbewegung in kristallinen Festkörpern

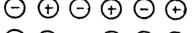
Festionenleiter


Ionische Kristalle leiten meist keine Ionen

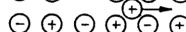
Ihre Ionen bewegen sich nur leicht im Kristallgitter.

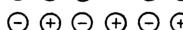
 Um sie ionenleitend zu machen greift man zu einem Trick, den wir für die Erhöhung der elektrischen Leitfähigkeit in Halbleitern kennen: Einbau von Fehlstellen durch Dotieren.

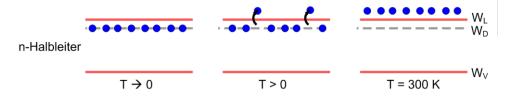
Vgl.: Einbau von Fehlstellen (Dotierung) in Halbleitern führt zur e⁻-Leitfähigkeit


Defekte als Verursacher von Ionenleitung

- Schottky-Defekt: Fehlstellen im Kristall
- Frenkel-Defekt: Zwischengitterionen mit kompensierenden Fehlstellen
- Wiederholte Bewegung von Fehlstellen und Zwischenionen führen zu Ionentransport = Ladungstransport



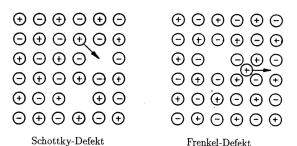


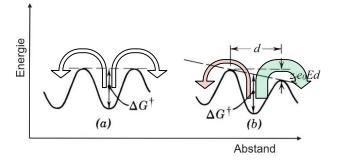

$$\oplus$$
 \ominus \oplus \ominus \oplus \ominus

Schottky-Defekt

Frenkel-Defekt

Aufgabe 1a: Festkörperleitfähigkeit


a. In ionischen Festkörpern können Ladungsträger durch die Bewegung von Gitterfehlstellen über Energiebarrieren ΔG^{\dagger} hinweg diffundieren (Abbildung 1). Es stellt sich eine Diffusionsstromdichte $j_{i,0}$ ein, die sich in alle Raumrichtungen ausgleicht.


$$j_{i,0} = z_i e_0 n \nu d \cdot \exp\left(-\frac{\Delta G^{\dagger}}{k_B T}\right)$$

Im Folgenden sei ein gerichtetes elektrisches Feld E angelegt, welches die Ionenströme $j_{i,\rightarrow}$ und $j_{i,\leftarrow}$ entlang gegensätzlicher Richtungen der Feldlinien energetisch begünstigt bzw. mindert.

$$j_{i,\to} = j_{i,0} \cdot \exp\left(\frac{z_i e_0 E d}{2k_B T}\right)$$
$$j_{i,\leftarrow} = j_{i,0} \cdot \exp\left(-\frac{z_i e_0 E d}{2k_B T}\right)$$

Zeigen Sie, dass die ionische Leitfähigkeit $\sigma_i = \sigma_i(T)$ und der Diffusionskoeffizient $D_i = D_i(T)$ als Funktionen der Temperatur T angegeben werden können. Nehmen Sie für kleine Werte x die folgende Näherung an: $\sinh(x) = x$.

d: Distanz zwischen Barrieren

e₀: Elementarladung

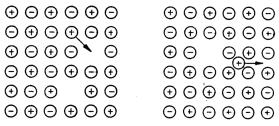
 k_B : Boltzmann-Konstante

n: Dichte beweglicher Ladungsträger

 z_i : Ladungszahl

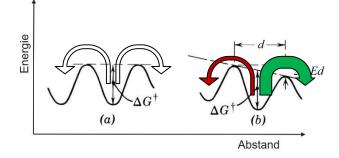
 ν : Frequenz der Gitterschwingung

Aufgabe 1a: Festkörperleitfähigkeit


$$j_{i,netto} = j_{i,\rightarrow} - j_{i,\leftarrow}$$

$$j_{i,netto} = z_i e_0 n \nu d \cdot \exp\left(-\frac{\Delta G^{\dagger}}{k_B T}\right) \cdot \left[\exp\left(\frac{z_i e_0 E d}{2k_B T}\right) - \exp\left(-\frac{z_i e_0 E d}{2k_B T}\right)\right]$$

$$j_{i,netto} = z_i e_0 n \nu d \cdot \exp\left(-\frac{\Delta G^{\dagger}}{k_B T}\right) \cdot 2 \cdot \sinh\left[\frac{z_i e_0 E d}{2k_B T}\right]$$


$$j_{i,netto} = z_i e_0 n \nu d \cdot \exp\left(-\frac{\Delta G^{\dagger}}{k_B T}\right) \cdot \left[\frac{z_i e_0 E d}{k_B T}\right]$$

$$j_{i,netto} = \frac{z_i^2 e_0^2 n \nu d^2}{k_B T} \cdot \exp\left(-\frac{\Delta G^{\dagger}}{k_B T}\right) \cdot E$$

Schottky-Defekt

 $e^x - e^{-x} = 2 \cdot \sinh(x)$

$$E = 1 - 100 \ kV/m$$

$$a \approx 10 \text{ Å},$$

$$T = 300 - 1300 K$$

$$\sinh\left[\frac{z_i e_0 E d}{2k_B T}\right] = \frac{z_i e_0 E d}{2k_B T}$$

d: Distanz zwischen Barrieren

e₀: Elementarladung

 k_B : Boltzmann-Konstante

n: Dichte beweglicher Ladungsträger

 z_i : Ladungszahl

 ν : Frequenz der Gitterschwingung

Aufgabe 1a: Festkörperleitfähigkeit

Aus Vorlesung 17:

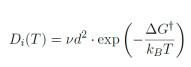
ionische. Leitfähigkeit
$$j = \overset{\bullet}{\sigma} E = \frac{1}{\rho} E$$

$$\overset{\bullet}{\uparrow}$$
 Spez. Widerstand

$$j_{i,netto} = \frac{z_i^2 e_0^2 n \nu d^2}{k_B T} \cdot \exp\left(-\frac{\Delta G^{\dagger}}{k_B T}\right) \cdot E$$

$$\sigma_i$$

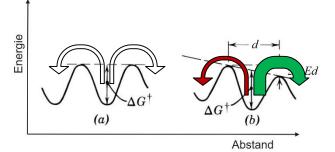
$$\sigma_i(T) = \frac{z_i^2 e_0^2 n \nu d^2}{k_B T} \cdot \exp\left(-\frac{\Delta G^\dagger}{k_B T}\right)$$


$$j_{Mig} = j_{k,Mig} + j_{a,Mig} = \underbrace{(z_k e_0 k \mu_k + z_a e_0 a \mu_a)}_{\text{ion. Leitfähigkeit } \sigma} E$$

$$\mu_i = \frac{e_0 z_i}{k_B T} D_i$$

$$\sigma_i = z_k e_0 k \mu_i$$

$$D_i = \frac{k_B T}{e_0 z_i} \mu_i$$


$$\mu_i = \frac{\sigma}{z_k e_0 k}$$

- \oplus \ominus \ominus \ominus \ominus
- \oplus \ominus \oplus \ominus \ominus
- $\bigcirc \oplus \bigcirc \oplus \bigcirc \oplus$ $\bigoplus \bigcirc \bigoplus \bigcirc^{\bullet} \bigcirc$
- $\bigcirc \oplus \bigcirc \oplus \bigcirc \oplus$
- $\bigcirc \oplus \bigcirc \oplus \bigcirc \oplus$
- $\oplus \ominus \ominus \ominus \ominus \ominus$ $\Theta \oplus \Theta \oplus \overline{\Theta} \oplus$
- $\oplus \ominus \oplus \ominus$
- \oplus \ominus \ominus \ominus \ominus \ominus
- $\bigcirc \oplus \bigcirc \oplus \bigcirc \oplus$
- $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Schottky-Defekt

Frenkel-Defekt

Distanz zwischen Barrieren

Elementarladung e_0 :

Boltzmann-Konstante

Dichte beweglicher Ladungsträger n:

Ladungszahl z_i :

Frequenz der Gitterschwingung

Aufgabe 1b: Technischer Einfluss auf Ionenleitfähigkeit

- b. Beschreiben Sie drei technische Möglichkeiten, durch welche die Größen der in a) resultierenden Gleichungen und folglich die Ionenleitfähigkeit beeinflusst werden können.
 - 1. <u>Temperaturerhöhung</u>: Für hohe Temperaturen T dominiert der Exponentialterm. Eine Erhöhung der Temperatur führt deswegen zu einem exponentiellen Anstieg der Leitfähigkeit.
 - 2. <u>Dotierung</u>: Ähnlich wie bei der Leitung von Elektronen im Festkörper skaliert die ionische Leitfähigkeit mit der Anzahl verfügbarer Ladungsträger n. Durch die Dotierung mit Fremdatomenn können zusätzliche Fehlstellen die Bildung von freien Ladungsträgern begünstigen.
 - 3. <u>Verwendung von Polymer- oder Flüssigelektrolyten</u>: Die Gitterstruktur der Festkörper bedingt hohe Energiebarrieren ΔG^{\dagger} . In Polymeren oder Flüssigkeiten führen zusätzliche Transportmechanismen zu Barrieren mit geringeren Energiewerten.

Lehrveranstaltung Optik und Festkörperelektronik

Ionenbeweglichkeit in Feststoffen

- Ionenbeweglichkeit μ_{ion} hängt stark ab von:
 - Anzahl an Defekten
 - Diffusionskonstante des Ions
- Einstein-Relation erlaubt Berechnung über Diffusion (analog e⁻ Teil Lemmer)

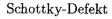
$$\mu_{ion} = \frac{e_0 n_{ion}}{k_B T} D_{ion}$$

- Temperatur spielt auch für die Migration eine entscheidende Rolle:
 - "extrinsic range" (technisch relevant)
 Diffusion nimmt zu; Anzahl der Defekte bleibt konstant

$$\mu_{ion} = \frac{e_0 n_{ion}}{k_B T} D_{i0} \exp(-\frac{W_i}{k_B T})$$

"intrinsic range"
 zusätzliche Defekte entstehen bei höheren T und
 beeinflussen den Diffusionskoeffizienten zusätzlich

Merke: bei Festkörpern/Polymeren ist oft nur ein Ion mobil! Z.B. O²⁻ in ZrO₂: $\mu_{Zr^{4+}} \rightarrow 0 \Rightarrow j_{P,F} = 0 \Rightarrow j_F = j_{n,F}$


$$\bigcirc \oplus \bigcirc \oplus \bigcirc \oplus$$

$$\oplus \ominus \ominus \ominus \frown \bigcirc$$

$$\bigcirc \oplus \bigcirc \oplus \bigcirc \oplus$$

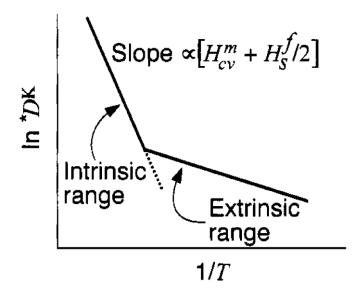
$$\oplus \ominus \oplus \ominus$$

$$\bigcirc \oplus \bigcirc \oplus \bigcirc \oplus$$

$$\oplus \ \ominus \ \oplus \ \ominus \ \oplus \ \ominus$$

$$\bigcirc \oplus \bigcirc \oplus \bigcirc \oplus$$

$$\oplus$$
 \bigcirc
 \bigcirc
 \bigcirc
 \bigcirc


$$\Theta \oplus \overline{\Theta} \oplus \overline{\Theta} \oplus$$

$$\oplus$$
 \ominus \oplus \ominus \ominus

$$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

Frenkel-Defekt

[Fasching]

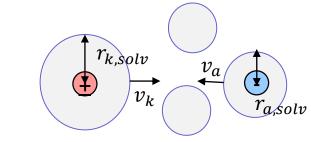
[Balluffi]

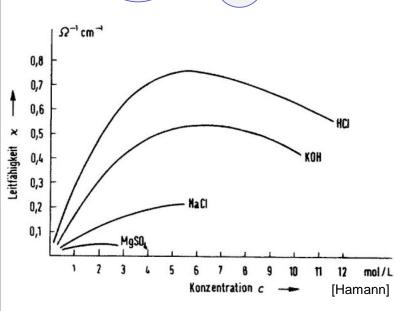
Lehrveranstaltung Optik und Festkörperelektronik

Ionenbeweglichkeit in Flüssigkeiten

- Ionen-Beweglichkeit und Geschwindigkeit, $\langle v_{ion} \rangle = -\mu_{ion} E$, herleitbar über Kräftebilanz von
 - elektrischer Kraft und
 - Stokessche Reibungskraft F_r durch die Flüssigkeit:

$$z e_0 E = F_r = 6 \pi \eta r_{ion,solv} \langle v_{ion} \rangle$$


 η : dynamische Viskosität des umgegebenden Mediums. [J m $^{-2}$]


- Maß die Zähigkeit von Flüssigkeiten und Gasen
- = Schubspannung pro Geschwindigkeitsgradient
- Hieraus folgt:

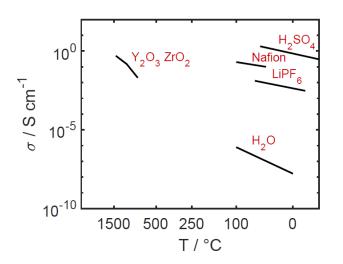
$$\mu_{ion} = \frac{ze_0}{6 \, \pi \eta r_{ion,solv}}$$

- Bei höheren Ionenkonzentrationen kommt es signifikant zu
 - Einfluss elektrostatischer Kräfte zwischen Ionen,
 - Assoziation von Ionen (z.B. Na⁺ + Cl⁻ -> NaCl),
 - die u.a. n_{ion} und η beeinflussen, sodass σ_{ion} abfällt
- Da $\mu_a \neq \mu_k \neq 0$, gilt $j_{a,Mig} \neq j_{c,Mig}$!
- Für den Anteil einzelner Ionen am Gesamtmigrationsstrom definieren wir Überführungszahlen t_a und t_c :

$$t_a = \frac{j_{a,Mig}}{J_{Mig}}, t_c = \frac{j_{c,Mig}}{J_{Mig}} = 1 - t_a$$

Aufgabe 1b: Technischer Einfluss auf Ionenleitfähigkeit

- b. Beschreiben Sie drei technische Möglichkeiten, durch welche die Größen der in a) resultierenden Gleichungen und folglich die Ionenleitfähigkeit beeinflusst werden können.
 - 1. <u>Temperaturerhöhung</u>: Für hohe Temperaturen T dominiert der Exponentialterm. Eine Erhöhung der Temperatur führt deswegen zu einem exponentiellen Anstieg der Leitfähigkeit.
 - 2. <u>Dotierung</u>: Ähnlich wie bei der Leitung von Elektronen im Festkörper skaliert die ionische Leitfähigkeit mit der Anzahl verfügbarer Ladungsträger n. Durch die Dotierung mit Fremdatomenn können zusätzliche Fehlstellen die Bildung von freien Ladungsträgern begünstigen.
 - 3. <u>Verwendung von Polymer- oder Flüssigelektrolyten</u>: Die Gitterstruktur der Festkörper bedingt hohe Energiebarrieren ΔG^{\dagger} . In Polymeren oder Flüssigkeiten führen zusätzliche Transportmechanismen zu Barrieren mit geringeren Energiewerten.


Aufgabe 1c: Vergleich ionenleitfähiger Substanzen

c. Gegeben sind die Zusammensetzungen verschiedener ionenleitfähigen Substanzen. Ordnen Sie diese den in Abbildung 2 gegebenen Leitfähigkeitswerten über deren Temperaturverlauf zu. Beachten Sie hierbei die Skalierung der Achsen. Erklären Sie die unterschiedlichen Leitfähigkeiten.

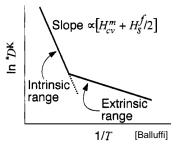
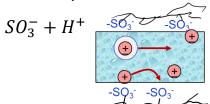
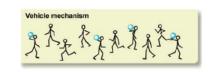

- 1. H₂O
- 2. H_2SO_4
- 3. LiPF₆ in organischem Lösungsmittel
- 4. Nafion (Copolymer)
- 5. Y_2O_3 dotiertes ZrO_2

Abbildung 2: Ionenleitfähigkeit verschiedener Substanzen über deren Temperaturverlauf.

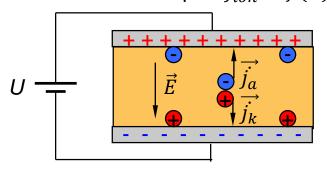



5. Dotierung von ZrO_2 mit Y_2O_3 $2 ZrO_2 + Y_2O_3 \rightarrow 2 ZrYO_2 + O^{2-}$

(techn.) Leitfähig bei hohen T

- 1. H_2O : Keine Dissoziation = keine Ionen $H_2O \leftarrow 2H^+ + O^{2-}$
- 2. H_2SO_4 : Hohe Dissoziation = viele Ionen $H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$
- 3. LiPF₆: Hohe Dissoziation = viele Ionen $LiPF_6 \rightarrow Li^+ + PF_6^-$
- 4. Nafion: Transportmechanismen

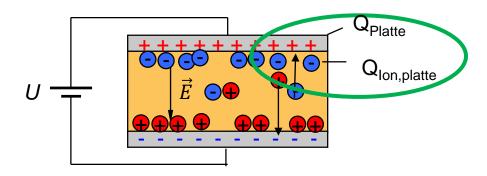
T. Ueki and M. Watanabe, Macromolecules 41, 3739 (2008)


Übersicht 10. Übung

Teil 1: Ionenleiter

Elektrolyte

-> Ionentransport $\overrightarrow{j_{ion}} = f(E)$

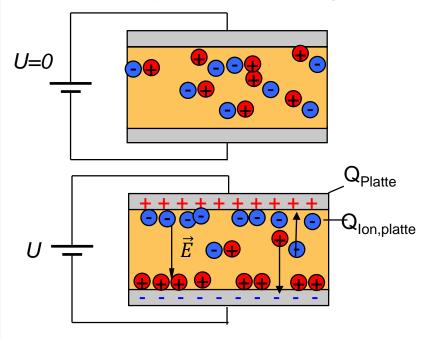


Aufgabe 1: Ionenleitfähigkeit

- a) Festkörperleitfähigkeit
- b) Technischer Einfluss
- c) Vergleich Ionenleitfähiger Substanzen

Teil 2: Grenzfläche

Doppelschicht


Aufgabe 2: Doppelschicht

- a) Helmholzflächen
- b) Stern-Modell
- c) Doppelschichtkapazität

Gedankenexperiment Elektrolyt zwischen zwei Platten

Elektrolyt unter Spannung

Wir wissen nun:

- Setzt man einen in Ruhe befindlichen Elektrolyten $(\frac{dn_{ion}}{dx}=0)$ einem el. Feld aus, so entsteht ein Ionentransport zu den Platten (Elektrode)
- Anionen kompensieren die Ladung der positiven Platte, Kationen die der negativen Platte (Elektrode)

Noch offen:

- Wie sieht diese Grenzfläche aus?
- Wieviel Ladung kann dort gespeichert werden?
 (u.a. Nutzung in Elektrolytkondensator, Supercap)
- Wieso wird an der Grenzfläche Elektrode/Elektrolyt eine Spannung erzeugt, die als elektrische Energiequelle nutzbar ist?

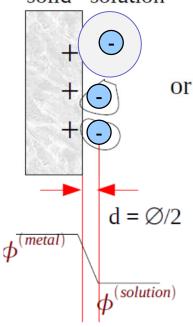
(u.a. Nutzung in Batterien, Brennstoffzellen,...)

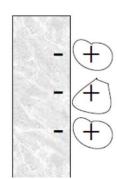
Elektrolytische Doppelschicht bei Elektrolyten mit hohen Ionenkonzentrationen

Elektrolytische Doppelschicht:

- Ionen lagern sich an der Oberfläche der Elektrode an.
- Aufgrund der starken Coulomb-Kräft stellt sich der minimale Abstand zwischen Ion und Elektrode ein.
- Bei Annahme einer Punktladung für Ionen entspricht der Ladungsabstand d zwischen Elektrode und Ionen
 - einem halben lonendurchmesser (nicht solvatisiert) bzw.
 - einem halben Durchmesser des solvatisierten Ions.
- Resultierender Abstand d im sub-nm-Bereich!
- Die Schicht heisst Helmholtzschicht oder starre Doppelschicht!

Ladung und Potential in der Doppelschicht:

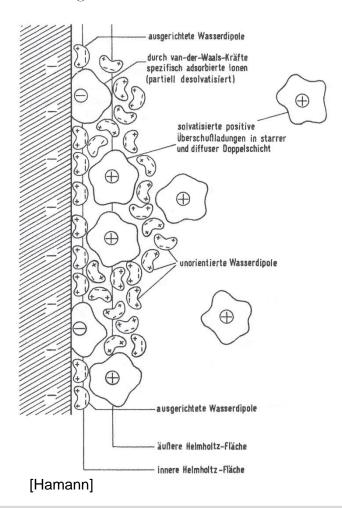

 Ladungsdichte in ionischer Schicht ist der der Elektrode entgegengesetzt:


$$Q_{Metall} = -Q_{Elektrolyt} \rightarrow \rho_{Metall} = -\rho_{Elektrolyt}$$

 Mit der Poisson-Gleichung ergibt sich ein linear Potentialverlauf zwischen beiden Ladungsschichten:

$$\frac{\mathrm{d}^2\phi}{\mathrm{d}x^2} = -\frac{4\pi\rho}{\varepsilon_0\varepsilon_r} = 0 \ \to \frac{d\phi}{dx} = \frac{\phi_{Metall} - \phi_{Elektrolyt}}{d} = const$$

(Helmholtz) double layer


Merke: konzentrierte Elektrolyte zeigen

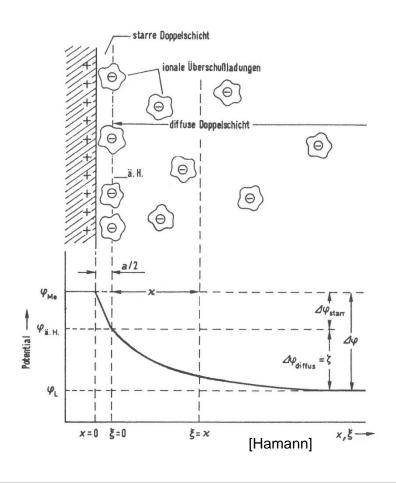
- Doppelschicht mit linearem
 Potentialabfall an Elektrodengrenzfläche
- Resultierende Doppelschicht-Kapazität an Elektroden-Elektrolyt-Grenzfläche: $C = \frac{Q}{\phi_{Metall} \phi_{Elektrolyt}}$

Aufgabe 2a: Helmholzflächen

a. Bringt man eine Elektrode in einen flüssigen Elektrolyten ein, bildet sich an der Grenzfläche eine elektrische Doppelschicht. Nennen Sie die beiden Flächen, in die sich nach Helmholz in der Doppelschicht organisieren. Wie unterscheiden sich diese im Wesentlichen?

Innere Helmholzfläche

- Adsorbierte Ionen
- Ausgerichtete Dipole


Äußere Helmholzfläche

Solvatisierte Überschussladungen

Aufgabe 2b: Stern-Modell

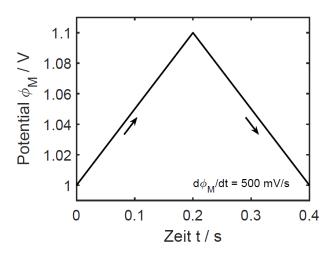
b. Die Modellvorstellung nach Otto Stern fasst die von Helmholz definierten Flächen als starre Schicht zusammen und postuliert eine zusätzliche diffuse Schicht. Zeichnen Sie den nach diesem Modell resultierenden Potentialverlauf qualitativ über der senkrecht zur Elektrode stehenden Raumrichtung. Bezeichnen Sie zudem die elektrischen Potentiale und die Ausdehnung aller wesentlichen Bereiche.

Starre Doppelschicht

Linearer Potentialverlauf

Diffuse Doppelschicht

Exponentieller Potentialverlauf


Aufgabe 2c: Doppelschichtkapazität

c. Im Ersatzschaltbild lässt sich die Doppelschicht durch eine Reihenschaltung zweier klassischer Kondensatoren beschreiben.

$$\frac{1}{C_d} = \frac{1}{C_{starr}} + \frac{1}{C_{diffus}}$$

Die Doppelschichtkapazität C_d kann experimentell mittels Cyclovoltammetrie bestimmt werden. Hierzu wird ein elektrisches Potential an der Metallelektrode angelegt und mit unterschiedlichen Raten $d\phi_M/dt$ linear variiert (Abbildung 3). Ähnlich des Ladungsverhaltens eines klassischen Kondensators, stellt sich ein konstante Stromdichte j ein (Abbildung 4). Bestimmen Sie die flächenspezifische Doppelschichtkapazität unter der Annahme, dass es sich um eine planare Grenzfläche handelt und das Potential im Inneren des Elektrolyts über die Zeit konstant ist.

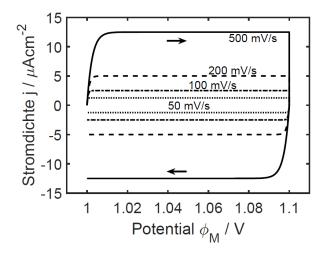


Abbildung 3: Zyklisch linearer Potentialverlauf einer definierten Rate

Abbildung 4: Resultierende Stromdichten bei verschiedenen Potentialraten.

Aufgabe 2c: Doppelschichtkapazität

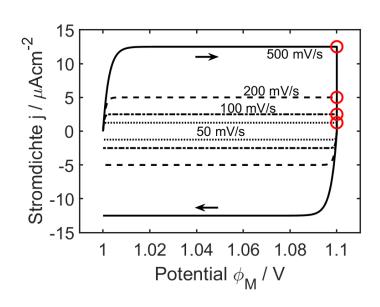
c. Im Ersatzschaltbild lässt sich die Doppelschicht durch eine Reihenschaltung zweier klassischer Kondensatoren beschreiben.

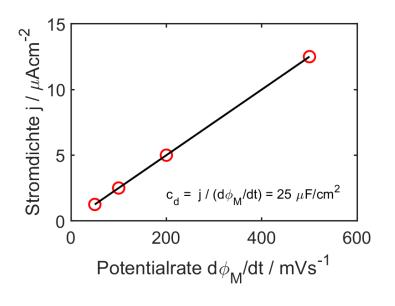
$$\frac{1}{C_d} = \frac{1}{C_{starr}} + \frac{1}{C_{diffus}}$$

Die Doppelschichtkapazität C_d kann experimentell mittels Cyclovoltammetrie bestimmt werden. Hierzu wird ein elektrisches Potential an der Metallelektrode angelegt und mit unterschiedlichen Raten $d\phi_M/dt$ linear variiert (Abbildung 3). Ähnlich des Ladungsverhaltens eines klassischen Kondensators, stellt sich ein konstante Stromdichte j ein (Abbildung 4). Bestimmen Sie die flächenspezifische Doppelschichtkapazität unter der Annahme, dass es sich um eine planare Grenzfläche handelt und das Potential im Inneren des Elektrolyts über die Zeit konstant ist.

$$Q = C \cdot U = C_d \cdot (\phi_M - \phi_{El})$$

$$I = \frac{dQ}{dt} = (\phi_M - \phi_{El}) \underbrace{\frac{dC_d}{dt}}_{=0} + C_d \underbrace{\frac{d\phi_M}{dt}}_{=0} - C_d \underbrace{\frac{d\phi_{El}}{dt}}_{=0}$$

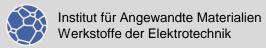

$$j = c_d \cdot \frac{d\phi_M}{dt}$$
 $\qquad \qquad \qquad \qquad \qquad c_d = \frac{j}{\frac{d\phi_M}{dt}}$


Aufgabe 2c: Doppelschichtkapazität

Flächenspezifische Doppelschichtkapazität

$$c_d = \frac{j}{\frac{d\phi_M}{dt}} = 25 \frac{\mu F}{cm^2}$$

Weiterführende Literatur


- Hamann 2005 Elektrochemie
- O'Hayre 2006 Fuel Cell (inkl. Übungsaufgaben)
- Atkins 2006 Physikalische Chemie (inkl. Übungsaufgaben)

Auszüge Online in ILIAS verfügbar

Vielen Dank!

Fragen?

