Passive Bauelemente Sommersemester 2013 Einführung

www.iwe.kit.edu

Einführungsfolien, Folie: 1, 17.04.2013

Passive Bauelemente Sommersemester 2013 Dozent

Dozent

Dr.-Ing. Wolfgang Menesklou

- Sekretariat: Forschungszentrum Umwelt, Geb. 50.40, Raum 319
- Telefon: 0721/608-47491

Forschungsgebiete am IWE

Materialentwicklung für und Modellierung von

- Brennstoffzellen
- Li-Ionen-Batterien
- Sensoren
- Gasseparationsmembranen

Weitere Lehrveranstaltungen des IWE

- Batterien und Brennstoffzellen (WS, SS)
- Sensoren (WS)
- Praktikum Sensoren und Aktoren (SS)
- Praktikum Batterien und Brennstoffzellen (WS, SS)
- Sensorsysteme (Integrierte-Sensor-Aktor-Systeme) (SS)
- Modellbildung elektrochemischer Systeme (SS)

www.iwe.kit.edu

Passive Bauelemente Sommersemester 2013 Vorlesungsvertretung

Vorlesungsvertretung

Dr.-Ing. Stefan F. Wagner

- Büro: Forschungszentrum Umwelt, Geb. 50.40, Raum 315
- Telefon: 0721/608-48455
- E-Mail: stefan.wagner@kit.edu

Dr.-Ing. André Weber Büro: Forschungszentrum Umwelt, Geb. 50.40, Raum 314

- Telefon: 0721/608-47572
- E-Mail: andre.weber@kit.edu

www.iwe.kit.edu

Einführungsfolien, Folie: 3, 17.04.2013

Passive Bauelemente Sommersemester 2013 Betreuung

- Telefon: 0721/608-46484
- E-Mail: michael.schoenleber@kit.edu

Dipl.-Phys. Julian Szász Büro: Forschungszentrum Umwelt, Geb. 50.40, Raum 351

- Telefon: 0721/608-41733
- E-Mail: julian.szasz@kit.edu

Sprechstunden Nach Vereinbarung – einfach anrufen oder E-Mail schreiben.

www.iwe.kit.edu

Einführungsfolien, Folie: 4, 17.04.2013

Passive Bauelemente Sommersemester 2013 Saalübungen

Organisation

- •Es gibt acht Übungsstunden.
- •Übungen werden zu den normalen Vorlesungszeiten durchgeführt.
- •Übungsblätter werden rechtzeitig vor der Übung ins Netz gestellt
- •Eine Terminübersicht aller Vorlesungen und Übungen kann unter dem Stichwort
- "Veranstaltungsplan" von der Vorlesungshomepage heruntergeladen werden.

Einführungsfolien, Folie: 5, 17.04.2013

Passive Bauelemente Sommersemester 2013 Veranstaltungszeiten

Gewicht : 3 4,5 I	SWS ECTS	Zeit und Ort:	Dienstag, 11.30 Donnerstag, 8.00	– 13.00 Uhr – 9.30 Uhr	, 90 min, Hörsaal Benz r, 90 min, Hörsaal MTI
Termin		Veranstaltung	Termin		Veranstaltung
Dienstag	16.04.2013	Vorlesung 1	Donnerstag	06.06.2013	frei
Donnerstag	18.04.2013	Vorlesung 2	Dienstag	11.06.2013	Vorlesung 7
Dienstag	23.04.2013	Übung 1	Donnerstag	13.06.2013	Vorlesung 8
Donnerstag	25.04.2013	Vorlesung 3	Dienstag	18.06.2013	Übung 5
Dienstag	30.04.2013	Vorlesung 4	Donnerstag	20.06.2013	Vorlesung 9
Donnerstag	02.05.2013	Übung 2	Dienstag	25.06.2013	Vorlesung 10
Dienstag	07.05.2013	Vorlesung 5	Donnerstag	27.06.2013	Übung 6
Donnerstag	09.05.2013	frei (Feiertag)	Dienstag	02.07.2013	Vorlesung 11
Dienstag	14.05.2013	Übung 3	Donnerstag	04.07.2013	Übung 7
Donnerstag	16.05.2013	frei	Dienstag	09.07.2013	Vorlesung 12
Dienstag	21.05.2013	frei (Pfingstwoche)	Donnerstag	11.07.2013	Übung 8
Donnerstag	23.05.2013	frei (Pfingstwoche)			
Dienstag	28.05.2013	Vorlesung 6			
Donnerstag	30.05.2013	frei (Fronleichnam)	Donnerstag	05.09.2013	Klausurtermin
Dienstag	04.06.2013	Übung 4			

www.iwe.kit.edu

Einführungsfolien, Folie: 6, 17.04.2013

Passive Bauelemente Sommersemester 2013 Womit Sie lernen können ...

PB Folienskript

Die Vorlesungsfolien sind vor der jeweiligen Vorlesung unter http://www.iwe.kit.edu verfügbar.

Eine gebundene Version aller Folien ist ab sofort im Skriptenverkauf erhältlich.

Buch "Werkstoffe der Elektrotechnik" (Ellen Ivers-Tiffée) Teubner (10te Auflage 2007, Preis 26,90 €, siehe Literaturliste).

Wir stellen Ihnen weiterhin zur Verfügung

- Übungsblätter
- Formelsammlung (für die Klausur gültige Fassung ab 12.04.2013)
- Alte Klausurjahrgänge
- Liste ausgewählter Literatur

www.iwe.kit.edu

Einführungsfolien, Folie: 7, 17.04.2013

Passive Bauelemente Sommersemester 2013 Internet

Internetauftritt Ankündigungen unter http://www.iwe.kit.edu

Zugang zum Download User: pb Passwort: Fcenter13

www.iwe.kit.edu

Einführungsfolien, Folie: 8, 17.04.2013

Passive Bauelemente Sommersemester 2013 Vorlesungsinhalt

Kapitel 1: Aufbau von Atomen und Festkörpern

- 1.1 Atommodell
- 1.2 Periodensystem der Elemente
- 1.3 Chemische Bindungen
- 1.4 Ideale Kristalle
- 1.5 Kristallfehler und reale Festkörper
- 1.6 Exkurs in die Gibbs'sche Thermodynamik
- 1.7 Thermische und mechanische Aspekte

Kapitel 2: Leiterwerkstoffe und Ihre Bauelemente

2.1 Einführung
2.2 Klassische Bandleiter
2.3 Halbleitende Metalloxide
2.4 Elektronische Hoppingleiter
2.5 Ionische Hoppingleiter
2.6 Supraleiter

www.iwe.kit.edu

Einführungsfolien, Folie: 9, 17.04.2013

Passive Bauelemente Sommersemester 2013 Vorlesungsinhalt

Kapitel 3: Dielektrische Werkstoffe und Ihre Bauelemente

- 3.1 Einführung
- 3.2 Polarisationsmechanismen
- 3.3 Verhalten von Dielektrika im Wechselfeld
- 3.4 Piezoelektrische Werkstoffe
- 3.5 Ferroelektrische Werkstoffe
- 3.6 Pyroelektrische Werkstoffe
- 3.7 Kondensatoren

Kapitel 4: Magnetische Werkstoffe und Ihre Bauelemente

- 4.1 Einführung
- 4.2 Grundlagen
- 4.3 Polarisationsmechanismen
- 4.4 Magnetische Hysterese
- 4.5 Verhalten von Magnetika im Wechselfeld
- 4.6 Bauelemente und Anwendungen

www.iwe.kit.edu

Einführungsfolien, Folie: 10, 17.04.2013

Passive Bauelemente Sommersemester 2013 Ausgewählte Literatur

Vorlesungsbegleitend

- E. Ivers-Tiffée, W. von Münch, Werkstoffe der Elektrotechnik, Teubner, 10. Aufl. 2007
- G. Fasching, Werkstoffe für die Elektrotechnik, Springer, 4. Aufl. 2005

Kapitel 1

- P. W. Atkins, J. de Paula, *Physikalische Chemie*, Wiley-VCH, 4. Aufl. 2006 (Standardwerk)
- C. E. Mortimer, U. Müller, Chemie, Thieme, 10. Aufl. 2010 (Vertiefung in anorganischer Chemie)
- P. A. Tipler, G. Mosca, Physik, Spektrum, 6. Aufl. 2009 (relativ eingängige Darstellung)

Kapitel 2

- W. Heywang (Hrsg.), Amorphe und polykristalline Halbleiter, Springer, 1984
- M. Reisch, *Elektronische Bauelemente*, Springer, 2. Aufl. 2007 (Nachschlagewerk)
- H. Schaumburg (Hrsg.), Keramik, Teubner, 1994
- O. Zinke, H. Seither, Widerstände, Kondensatoren, Spulen und ihre Werkstoffe, Springer, 2. Aufl. 1982

Kapitel 3

- M. Reisch, Elektronische Bauelemente (s.o.)
- O. Zinke, H. Seither, Widerstände, Kondensatoren, Spulen und ihre Werkstoffe (s.o.)

Kapitel 4

• W. von Münch, Elektrische und magnetische Eigenschaften der Materie, Teubner, 1987

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Einführungsfolien, Folie: 11, 17.04.2013

Kapitel 1 Aufbau von Atomen und Festkörpern

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 1, 12.04.2013

Kapitel 1 Aufbau von Atomen und Festkörpern

- 1.1 Atommodell
- 1.2 Periodensystem der Elemente
- 1.3 Chemische Bindungen
- 1.4 Ideale Kristalle
- 1.5 Kristallfehler und reale Festkörper
- 1.6 Exkurs in die Gibbs'sche Thermodynamik
- 1.7 Thermische und mechanische Aspekte

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 2, 12.04.2013

1.1 Atommodell Einige Wegbereiter

Wolfgang Pauli * 1900 † 1958

1925

Ausschlussprinzip (,Pauli-Prinzip')

www.iwe.kit.edu

1.1 Atommodell Bohrsches Atommodell

- Positiv geladener Atomkern (+ Ze_0) besteht aus Protonen und Neutronen. $d_{\text{Kern}} \approx 10^{-15} \text{ m}$ $d_{\text{Atom}} \approx 0.8 \cdot 10^{-10} \dots 3 \cdot 10^{-10} \text{ m}$
- Negativ geladenes Elektron (-*e₀*) umläuft Atomkern auf diskreten Kreisbahnen.

$$|F| = \frac{1}{4\pi\varepsilon_0} \frac{Ze_0^2}{r^2} = \frac{m_e v^2}{r}$$

Coulomb-Kraft = Zentripetalkraft

Problem: Gemäß Elektrodynamik verliert beschleunigtes Elektron (Rotation) Strahlungsenergie.

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 4, 12.04.2013

1.1 Atommodell Bohrsche Postulate

Lösung: Bohr postuliert (1913)

1. Nicht alle aufgrund der klassischen Mechanik möglichen Bahnen sind erlaubt, sondern nur solche, für die der Drehimpuls $L = m_e vr$ ein ganzzahliges Vielfaches der Größe $\hbar = h/2\pi$ ist. 2. Auf den erlaubten
Bahnen finden die Gesetze
der Elektrodynamik keine
Anwendung. Die Bewegung
des Elektrons erfolgt
strahlungslos.

3. Ein Übergang zwischen zwei erlaubten Bahnen erfolgt unter Emission oder Absorption eines Photons. Dabei gilt $v h = E_1 - E_2$.

[Rudden 1995]

Bohr konnte mit seinem Atommodell u.a. das Spektrum des Wasserstoffatoms korrekt vorhersagen.

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 5, 12.04.2013

1.1 Atommodell Schrödinger-Gleichung der Quantenmechanik

Im Doppelspaltexperiment entwickeln Elektronen Wellencharakter (Interferenz). → Welle-Teilchen-Dualismus

Geburt der Quantenmechanik

Schrödinger formuliert 1926 eine Gleichung für die Wellenfunktion ψ zur Beschreibung der Bewegung massebehafteter Teilchen.

$$-\left(\frac{\hbar^2}{2m}\right)\frac{\partial^2\Psi}{\partial x^2} + V\Psi = i\hbar\frac{\partial\Psi}{\partial t}$$

Aufenthaltswahrscheinlichkeit des Teilchens am Ort *x* ist $|\Psi(x)|^2 dx$

[http://www.ikg.rt.bw.schule.de]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 6, 12.04.2013

1.1 Atommodell Elektron im Potentialtopf mit unendlich hohen Wänden (1)

Im Inneren des Potentialtopfs gilt die zeitunabhängige Schrödinger-Gleichung mit V = 0.

$$-\left(\frac{\hbar^2}{2m}\right)\frac{\partial^2\Psi}{\partial x^2} = E\Psi$$

[Rudden 1995]

Die Lösung ist die Wellenfunktion:

$$\Psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

 ψ_n existiert nur für diskrete Werte der Energie *E*, die Eigenwerte:

$$E_n = \frac{n^2 h^2}{8mL^2}$$
 (*n* = 1, 2, 3, ...)

 \rightarrow Die Quantisierung der Energie ergibt sich zwanglos (*n*: sog. Quantenzahl).

Nullpunktsenergie:
$$E_1 = \frac{h^2}{8mL^2}$$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 7, 12.04.2013

1.1 Atommodell Elektron im Potentialtopf mit unendlich hohen Wänden (2)

Stehende Elektronenwellen (Leitungselektronen in Cu-Substrat) in einem Ring von ca. 50 Fe-Atomen.

Verfahren: Rastertunnelmikroskopie

[Tipler 1994]

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 8, 12.04.2013

1.1 Atommodell Elektron im Zentralpotential (Potential eines Atomkerns)

Die zeitunabhängige Schrödinger-Gleichung wird zunächst auf Kugelkoordinaten transformiert.

$$-\left(\frac{\hbar^2}{2m}\nabla^2 + V(r)\right)\psi(r,\Theta,\Phi) = E\psi(r,\Theta,\Phi)$$

Ein Separationsansatz gemäß

 $\Psi(r,\Theta,\varphi) = R(r)f(\Theta)g(\varphi)$

löst die Schrödinger-Gleichung.

Die möglichen Lösungen für $\psi(r,\Theta,\varphi)$ werden durch drei ganzzahlige, voneinander abhängige Quantenzahlen *n*, *l*, *m* festgelegt.

 $n = 1, 2, 3 \dots$ $l = 0, 1, 2 \dots (n - 1)$ $m = 0, \pm 1, \pm 2 \dots \pm l$

[Tipler 1994]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 9, 12.04.2013

1.1 Atommodell Orbitale der Atome

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 10, 12.04.2013

1.1 Atommodell Eigenrotation des Elektrons

Bei der Messung der Emissionsspektren von Alkalimetallen wurde die Eigenrotation der Elektronen erstmals beobachtet, die sich durch eine Aufspaltung der einzelnen Spektrallinien bemerkbar macht. Wolfgang Pauli schlug 1924 für diese Phänomen einen quantenmechanischen Freiheitsgrad vor, der zwei Werte annehmen kann.

Elektronenspin $s = \pm 1/2$

Des weiteren konnte er damit begründen, dass sich genau zwei Elektronen ein Atomorbital teilen.

www.iwe.kit.edu

1.1 Atommodell Gegenüberstellung der Atommodelle

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 12, 12.04.2013

1.1 Atommodell Vollständiger Satz der Quantenzahlen

Die vollständige Charakterisierung der möglichen Elektronenzustände im Potential eines Atomkerns wird über die vier Quantenzahlen *n*, *l*, *m* und *s* vorgenommen.

n	1, 2, 3	K, L, M, N	Hauptquantenzahl/ Hauptschale (Abstand des Elektrons vom Atomkern)
Ι	0, 1, 2 (<i>n</i> - 1)	s, p, d, f	Drehimpulsquantenzahl/ Unterschale/ Orbital (Bahndrehimpuls des Elektrons)
т	0, ± 1, ± 2 ± /	-	Magnetische Quantenzahl (<i>z</i> -Komponente des Bahndrehimpulses)
S	± 1/2	-	Eigendrehimpulsquantenzahl (z-Komponente des Elektronenspins)
			[Tipler 1994]

s: sharp; p: principal; d: diffuse; f: fundamental danach alphabetisch fortgesetzt

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 13, 12.04.2013

1.2 Periodensystem der Elemente Termschema

Haupt- Quantenzahl	Schale	Elektronen pro Schale	Orbital	Elektronen pro Orbital
				_
1	K	2	S	2
2	L	8	S	2
			р	6
3	М	18	S	2
			р	6
			d	10
4	N	32	S	2
			р	6
			d	10
			f	14
usw.		2 · <i>n</i> ²		$\sum_{l=0}^{n-1} (2l+1) \cdot 2$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 14, 12.04.2013

1.2 Periodensystem der Elemente Besetzungsregeln für Atomorbitale (1)

Pauli-Prinzip: In einem Atom dürfen die Elektronenzustände nicht in allen vier Quantenzahlen übereinstimmen. Aufgrund dessen beträgt die maximale Elektronenzahl pro Hauptschale

$$\sum_{l=0}^{n-1} (2l+1) \cdot 2 = 2 \cdot n^2$$

Hund'sche Regel: Die Atomorbitale werden zuerst von einzelnen Elektronen besetzt.

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 15, 12.04.2013

1.2 Periodensystem der Elemente Besetzungsregeln für Atomorbitale (2)

Die Elektronen besetzen zuerst Atomorbitale mit niedrigerem Energieniveau.

Die Reihenfolge ist nicht konsistent mit der Hauptquantenzahl *n*. So liegt z.B. die 4s-Unterschale energetisch günstiger als die 3d-Unterschale.

Besonders stabile Konfigurationen treten auf, wenn der Abstand zum nächsten Niveau besonders groß wird (sog. Edelgaskonfiguration).

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

1.2 Periodensystem der Elemente Elektronenkonfiguration bis Ordnungszahl Z = 36

Ζ	EI.	Elektronenkonfiguration							EI.	Elektronenkonfiguration							
1	Н	1s ¹						19	K	1s ²	2s ²	2p ⁶	3s ²	3p ⁶		4s ¹	
2	He	1s ²						20	Ca	1s ²	2s ²	2p ⁶	3s ²	3p ⁶		4s ²	
3	Li	1s ²	2s ¹					21	Sc	1s ²	2 <mark>s</mark> 2	2p ⁶	3s ²	3p ⁶	3d ¹	4s ²	
4	Be	1s ²	2s ²					22	Ti	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ²	4s ²	
5	В	1s ²	2s ²	2p ¹				23	V	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ³	4s ²	
6	С	1s ²	2s ²	2p ²				24	Cr	1s ²	2 <mark>s²</mark>	2p ⁶	3s ²	3p ⁶	3d ⁵	4s ¹	
7	Ν	1s ²	2s ²	2p ³				25	Mn	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ⁵	4s ²	
8	0	1s ²	2s ²	2p4				26	Fe	1s ²	2 <mark>s</mark> 2	2p ⁶	3s ²	3p ⁶	3d ⁶	4s ²	
9	F	1s ²	2s ²	2p ⁵				27	Со	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ⁷	4s ²	
10	Ne	1s ²	2s ²	2p ⁶				28	Ni	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ⁸	4s ²	
11	Na	1s ²	2s ²	2p ⁶	3s ¹			29	Cu	1s ²	2 <mark>s</mark> 2	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ¹	
12	Mg	1s ²	2s ²	2p ⁶	3s ²			30	Zn	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3 d ¹⁰	4s ²	
13	Al	1s ²	2s ²	2p ⁶	3s ²	3p1		31	Ga	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ¹
14	Si	1s ²	2s ²	2p ⁶	3s ²	3p ²		32	Ge	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ²
15	Ρ	1s ²	2s ²	2p ⁶	3s ²	3p ³		33	As	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ³
16	S	1s ²	2s ²	2p ⁶	3s ²	3p ⁴		34	Se	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ⁴
17	CI	1s ²	2s ²	2p ⁶	3s ²	3p ⁵		35	Br	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ⁵
18	Ar	1s ²	2s ²	2p ⁶	3s ²	3p ⁶		36	Kr	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ⁶

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 17, 12.04.2013

1.2 Periodensystem der Elemente Pauling-Schreibweise

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 18, 12.04.2013

1.2 Periodensystem der Elemente Standardisierte Darstellung

		Gruppen																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 2	1 2	$\begin{array}{c} 1 & 1,008 \\ H \\ Wasserstoff \\ \hline Wasserstoff \\ \hline Uithium \\ Beryllium \\ \hline 11 & 22,99 \\ \hline 12 & 24,31 \end{array} \qquad Ordnungszahl \longrightarrow 29 & 63,55 \\ \hline Cu \\ Kupfer \\ \hline Cu \\ Kupfer \\ \hline Cu \\ Fluor \\ \hline 11 & 22,99 \\ \hline 12 & 24,31 \\ \hline Cu \\ \hline Suerstoff \\ \hline Sickstoff \\ \hline Cu \\ \hline Fluor \\ \hline \hline Sickstoff \\ \hline Fluor \\ \hline \hline Sickstoff \\ \hline \hline Fluor \\ \hline \hline Sickstoff \\ \hline \hline Sickstoff \\ \hline \hline Fluor \\ \hline \hline Sickstoff \\ \hline \hline Fluor \\ \hline \hline \hline Sickstoff \\ \hline \hline Fluor \\ \hline $													2 4,003 He Helium 10 20,18 Neon 18 39,95				
Ű	3	Na	Mg		AI Si P S CI											Ar			
bde		19 39,10	20 40,08	21 44,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,41	31 69,72	32 72,64	33 74,92	34 78,96	35 79,90	36 83,80
) jrić	4	R Kalium	Ca Calcium	Scandium	Titan	V Vanadium	Chrom	Mangan	Fe Eisen	Cobalt	Nickel	Kupfer	Zink	Gallium	Germanium	AS Arsen	Selen	Brom	Krypton
ፈ	E	37 85,47	38 87,62 Cr	39 88,91 V	40 91,22 7	41 92,91	42 95,94	43 (98)	44 101,1 D	45 102,9	46 106,4	47 107,9	48 112,4	49 114,8	50 118,7	51 121,8	52 127,6 T o	53 126,9	54 131,3
	5	Rubidium	31 Strontium	T Yttrium	Zirkonium	Niob	Molybdän	Technetium	Ruthenium	Rhodium	P U Palladium	Ag Silber	Cadmium	Indium	Zinn	3D Antimon	Tellur	lod	Xenon
	6	55 132,9 CS	56 137,3 Ba	57 - 71 La-Lu	72 178,5 Hf	⁷³ 180,9 Ta	74 183,8 W	75 186,2 Re	76 190,2 OS	77 192,2 Ir	⁷⁸ 195,1 Pt	79 197,0 Au	80 200,6 Hg	81 204,4 TI	82 207,2 Pb	83 209,0 Bi	84 (209) PO	85 (210) At	86 (222) Rn
		Cäsium 87 (223)	Barium 88 (226)	89 - 103	Hafnium 104 (261)	Tantal 105 (262)	Wolfram 106 (266)	Rhenium 107 (264)	Osmium 108 (277)	Iridium 109 (268)	Platin 110 (271)	Gold 111 (272)	Quecksilber	Thallium	Blei	Bismut	Polonium	Astat	Radon
	7	7 Fr Ra AC-Lr Rf Db Sg Bh Hs Mt Ds Rg Francium Radium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium																	
	Lanthanoide		ide	57 138,9 La Lanthan	58 140,1 Ce Cer	59 140,9 Pr Praseodym	60 (145) Nd Neodym	61 (145) Pm Promethium	62 150,4 Sm Samarium	63 152,0 Eu Europium	64 157,3 Gd Gadolinium	65 158,9 Tb Terbium	66 162,5 Dy Dysprosium	67 164,9 HO Holmium	68 167,3 Er Erbium	69 168,9 Tm Thulium	70 173,0 Yb Ytterbium	71 175,0 Lu Lutetium	
	Actinoide		le	89 (227) AC Actinium	90 232,0 Th Thorium	91 231,0 Pa Protactinium	92 238,0 U Uran	93 (237) Np Neptunium	94 (244) Pu Plutonium	95 (243) Am Americium	96 (247) Cm Curium	97 (247) Bk Berkelium	98 (251) Cf Californium	99 (252) Es Einsteinium	100 (257) Fm Fermium	101 (258) Md Mendelevium	102 (259) No Nobelium	103 (262) Lr Lawrencium	

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 19, 12.04.2013

1.2 Periodensystem der Elemente Natürliche, künstliche Elemente und ihre Entdeckung

natürliches Element, nach 1700 entdeckt

künstliches Element, nach 1940 entdeckt

www.iwe.kit.edu

1.2 Periodensystem der Elemente Elementfamilien

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 21, 12.04.2013

1.2 Periodensystem der Elemente Klassische Halbleiter in der Elektrotechnik

wird in Vorlesung "Halbleiterbauelemente" vertieft

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 22, 12.04.2013

1.2 Periodensystem der Elemente Chemische Eigenschaften der Elemente

Edelgaskonfiguration

In der Edelgaskonfiguration liegt ein großer energetischer Abstand zur nächstmöglichen Schale vor. Dies ist der Fall, wenn das s-Orbital als äußere Schale komplett gefüllt ist (für n = 1) bzw. das p-Orbital als äußere Schale komplett gefüllt ist (für n > 1).

- Helium: 1s²
- Neon: 1s² 2s² 2p⁶
- Argon: $1s^2 2s^2 2p^6 3s^2 3p^6$

 \rightarrow energetisch besonders günstig, damit stabil und chemisch inert

Periodizität

Für das chemische Verhalten ist die Elektronenkonfiguration der äußeren Schale maßgebend.

→ periodisches Auftreten gleicher bzw. ähnlicher chemischer Eigenschaften

- Ionisierungsenergie
- Elektronenaffinität
- Atom- und Ionenradien

[Lindner 1997]

www.iwe.kit.edu

1.2 Periodensystem der Elemente Ionisierungsenergie (1)

Ionisierungsenergie ist der Energiebetrag, der benötigt wird, um das am schwächsten gebundene Elektron e- von einem Atom A abzuspalten.

 $\begin{array}{l} \text{Reaktion} \\ A(g) \rightarrow A^{\scriptscriptstyle +}(g) \, + \, e^{\scriptscriptstyle -} \end{array}$

A⁺ ist ein positives Ion (Kation)

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 24, 12.04.2013

1.2 Periodensystem der Elemente Elektronenaffinität (1)

Elektronenaffinität bezeichnet den Energiebeitrag, der mit Aufnahme eines Elektrons e⁻ durch ein neutrales Atom B verbunden ist.

Reaktion B(g) + $e^- \rightarrow B^-(g)$

B⁻ ist ein negatives Ion (Anion)

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 25, 12.04.2013
1.2 Periodensystem der Elemente Elektronegativität (1)

Beschreibung der Elektronegativität nach Pauling (1964):

"Unter der Elektronegativität versteht man das Bestreben eines neutralen Atoms in einem stabilen Molekül Elektronen auf sich zu ziehen.

[...]

Wie Mulliken zeigen konnte, ist der **Mittelwert** der ersten **Ionisierungsenergie** und der **Elektronenaffinität** eines Atoms ein Maß für die Anziehung eines Elektrons durch das neutrale Atom und damit für dessen Elektronegativität."

[Pauling 1964]

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 26, 12.04.2013

1.2 Periodensystem der Elemente Elektronegativität (3)

Elektronegativitätsskala der Elemente (alle Werte bei 25 °C)

													Н 2,1			
Li	Be	в											С	Ν	0	F
1,0	1,5	2,0											2,5	3,0	3,5	4,0
Na	$\mathbf{M}\mathbf{g}$	Al					•						Si	Р	\mathbf{S}	C1
0,9	1,2	1,5											1,8	$2,\!1$	2,5	3,0
ĸ	Ca	Se	\mathbf{Ti}	\mathbf{v}	\mathbf{Cr}	Mn	\mathbf{Fe}	Co	\mathbf{Ni}	Cu	\mathbf{Zn}	Ga	Ge	\mathbf{As}	\mathbf{Se}	Br
0,8	1,0	1,3	1,5	1,6	1,6	1,5	1,8	1,8	1,8	1,9	1,6	1,6	1,8	2,0	2,4	2,8
\mathbf{Rb}	\mathbf{Sr}	Y	\mathbf{Zr}	Nb	Mo	Te	Ru	$\mathbf{R}\mathbf{h}$	$\mathbf{P}\mathbf{d}$	$\mathbf{A}\mathbf{g}$	Cd	In	\mathbf{Sn}	\mathbf{Sb}	Те	J
0,8	1,0	1,3	1,4	$1,\!6$	1,8	1,9	2,2	2,2	2,2	1,9	1,7	1,7	1,8	1,9	$2,\!1$	2,5
Cs	Ba	La-Lu	Ħf	та	w	Re	Os	Ir	Pt	Au	$\mathbf{H}\mathbf{g}$	$\mathbf{T}\mathbf{l}$	Pb	Bi	Ро	At
0,7	0,9	1,1—1,2	1,3	1,5	1,7	1,9	Ъ,2	2,2	2,2	2,4	1,9	1,8	1,8	1,9	2,0	2,2
Fr	Ra	Ac	\mathbf{Th}	Pa	\mathbf{U}	Np-No										
0,7	0,9	1,1	1,3	1,5	1,7	1,3										

[Pauling 1964]

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 27, 12.04.2013

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 28, 12.04.2013

1.3 Chemische Bindungen Bindungsarten der Festkörper

• الظ**ار من م**ر (**(من من الل**

Bildung von Verbindungen durch Wechselwirkungen der äußeren Atomorbitale (z.B. Elektronenabgabe und -aufnahme, Überlappung der Elektronenwolken)

idealtypen (Grenzialie)	Deispiele
 ionische Bindung (heteropolare, ungerichtete Bindung) 	 Kochsalz (NaCl)
 kovalente Bindung (homöopolare, gerichtete Bindung) 	 Silizium (Si)
metallische Bindung	• Kupfer (Cu)

Ursache der Bildung von Verbindungen sind elektrostatische Kräfte zwischen den Atomen. ⇒ Gleichgewicht zwischen elektrostatischer Anziehung und Abstoßung

www.iwe.kit.edu

1.3 Chemische Bindungen Wechselwirkung zwischen einzelnen Atomen

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 29, 12.04.2013

1.3 Chemische Bindungen Ionische Bindung am Beispiel von Natriumchlorid (1)

Chlor (CI) hohe Elektronenaffinität Cl⁻ ist ein Anion

Natrium (Na) niedrige Ionisierungsenergie Na⁺ ist ein Kation

 $Na \bullet + \bullet CI \bullet \to Na^+ \bullet CI^- \bullet$

Eigenschaften: nicht plastisch verformbar, gute Isolatoren

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 30, 12.04.2013

1.3 Chemische Bindungen Ionische Bindung am Beispiel von Natriumchlorid (2)

Vereinfachte Darstellung der Bildung von NaCl											
Elektronenabgabe verbraucht Energie (Ionisierungsenergie des Natrium- Atoms)	5,12 eV + Na(g)	\rightarrow	Na+(g) + e [_] (g)								
Elektronenaufnahme setzt Energie frei (Elektronenaffinität des Chlor-Atoms)	e⁻(g) + Cl(g)	\rightarrow	Cl ⁻ (g) + 3,81 eV								
Kondensation gasförmiger Ionen in ein Kristallgitter setzt Energie frei	Na+(g) + CI- (g)	\rightarrow	NaCl(Kristall) + 7,93 eV								

Energiegewinn der Reaktion: 6,62 eV

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 31, 12.04.2013

1.3 Chemische Bindungen Oxidationszahlen bzw. Wertigkeiten der Elemente

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		1 1,008		Gruppen												2 4,003			
	1	н								0.1		•							He
	Ш	1 (-1)																	
	2	3 6,941	4 9,012 Ro											5 10,81 R	6 12,01	7 14,01 N	8 16,00	9 19,00 F	10 20,18 No
		1	2											<u>3</u>	<u>-4,4</u>	<u>-3</u>	-2	-1	ne
	\vdash	11 22,99	12 24,31											13 26,98	(2) 14 28,09	(2,3,4,5) 15 30,97	(-1) 16 32,06	17 35,45	18 39,95
	3	Na	Mg											ΑΙ	Si	Ρ	S	CI	Ar
en		1	2											<mark>3</mark> 3	<u>4</u> (-4)	<u>5</u> (-3,3)	<u>6</u> (-2,2,4)	<mark>-1</mark> (1,3,5,7)	
ğ		19 39,10	20 40,08	21 44,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,41	31 69,72	32 72,64	33 74,92	34 78,96	35 79,90	36 83,80
Ë	4	K 1		SC	4	V 5	Cr		Fe		2	Cu	Zn	Ga	Ge	AS	Se	Br	ĸr
e O	Ш	-	=	<u>×</u>	3	(0,2,3,4)	(0,2,6)	(-1,0,3,4,6,7)	(-2,0,2,6)	(-1,0,3)	(0,3)	(1)	=	<u>×</u>	-	(-3,5)	(-2,6)	(1,3,5,7)	(2)
ш <u>.</u>	_	37 85,47 Dh	38 87,62	39 88,91	40 91,22 7 4	41 92,91	42 95,94	43 (98) T o	44 101,1 D	45 102,9	46 106,4 Dd	47 107,9	48 112,4	49 114,8	50 118,7	51 121,8 Ch	52 127,6 T	53 126,9 ∎	54 131,3
	5	טח 1	2	1 3	Z ľ 4	5			пи 3.4	1.3	2 Fu	Ag		3	2.4	30	4	-1	хе
		÷	=	<u> </u>	-	(3)	('0,2,3,4,5)	-	(-2,0,2,6,8)	(0,2,4,5)	(0,4)	(2)	_	<u> </u>		(-3,5)	(-2,6)	(1,5,7)	(2,4,6)
		55 132,9	56 137,3	57 - 71	72 178,5	73 180,9	74 183,8	75 186,2	76 190,2	77 192,2	78 195,1	79 197,0	80 200,6	81 204,4	82 207,2	83 209,0	84 (209)	85 (210)	86 (222)
	Ø	US	Ва	La-Lu	HI	la 5	٧٧	Re	US	14	Pt 24	Au	нg		PD	BI	PO	At	RN
		±	£		2	<u> </u>	(0,2,3,4,5)	(-1,2,4,6)	- 2,0,2,3,6,8)	(-1,0,2,3,6)	(0)	(1)	(1)	(3)	(4)	(5)	(2,6)	(1,3,5,7)	(2)
		87 (223)	88 (226)	89 - 103															
	1	Fr	ка	AC-Lr															
		1	2																

	57 138,9	58 140,1	59 140,9	60 (145)	61 (145)	62 150,4	63 152,0	64 157,3	65 158,9	66 162,5	67 164,9	68 167,3	69 168,9	70 173,0	71 175,0
Lanthanoide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>											
		(4)	(4)			(2)	(2)		(4)				(2)	(2)	
	89 (227)	90 232,0	91 231,0	92 238,0	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
Actinoide	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>5</u>	<u>4</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>2</u>	<u>3</u>
			(4)	(3,4,5)	(3,4,6)	(3,5,6)	(4,5,6)	(4)	(4)	(4)				(3)	

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 32, 12.04.2013

1.3 Chemische Bindungen Radien von Atomen und Ionen

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 33, 12.04.2013

1.3 Chemische Bindungen Koordinationszahl von Verbindungen

Das Radienverhältnis von Kation zu Anion bestimmt die Geometrie und damit die Koordinationszahl

Koordinationszahl 2 Radienverhältnis: $r_{\rm K}/r_{\rm A} < 0,155$

Koordinationszahl 4 Radienverhältnis: $0,225 < r_{K}/r_{A} < 0,414$

Koordinationszahl 8 Radienverhältnis: $0,732 < r_K/r_A < 1,000$

Koordinationszahl 3 Radienverhältnis: $0,155 < r_K/r_A < 0,225$

Koordinationszahl 6 Radienverhältnis: $0,414 < r_K/r_A < 0,732$

Koordinationszahl 12 Radienverhältnis: 1,000 < r_K/r_A

[Callister 1994]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

1.3 Chemische Bindungen Kovalente Bindung am Beispiel von Wasserstoff (1)

- Überlappung von (teilbesetzten) Elektronenschalen bzw. Atomorbitalen
- Partnerelektron hilft bei der Erreichung einer komplett besetzten Schale
- Elektronendichte zwischen den (positiven) Atomkernen erhöht

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 35, 12.04.2013

1.3 Chemische Bindungen Kovalente Bindung am Beispiel von Wasserstoff (2)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 36, 12.04.2013

1.3 Chemische Bindungen Typische Hybridisierungsstrukturen kovalenter Bindungen

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 37, 12.04.2013

1.3 Chemische Bindungen Kohlenstoff in Diamantstruktur

Diamantstruktur (isomorph: Si, Ge)

[Tipler 1994, Mortimer 1973]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 38, 12.04.2013

1.3 Chemische Bindungen Wasser (H₂O-Molekül)

Bindungswinkel: 104,5° Hybridorbital: sp³ px, py -Orbitale des Sauerstoff s -Orbital des Wasserstoffs Sauerstoff besitzt eine höhere Elektronenaffinität als Wasserstoff.

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 39, 12.04.2013

1.3 Chemische Bindungen Vergleich ionischer/ kovalenter Bindungstyp

kovalente Bindung

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 40, 12.04.2013

1.3 Chemische Bindungen Übergang zwischen ionischer und kovalenter Bindung

In der Realität sind nur die wenigsten Verbindungen rein ionisch oder rein kovalent. ⇒ normalerweise herrschen gemischte Bindungen vor.

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 41, 12.04.2013

1.3 Chemische Bindungen Ionischer Grad einer Bindung

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 42, 12.04.2013

1.3 Chemische Bindungen Ionischer Bindungsanteil bei verschiedenen binären Verbindungen

Kristall	lonen- charakter	Kristall	lonen- charakter	Kristall	lonen- charakter	vollständig bzw. überwiegend	
Si	0,00	InP	0,42	MgO	0,84	ionisch	
SiC	0,18	InAs	0,36	MgS	0,79		
Ge	0,00	InSb	0,32	MgSe	0,79	vollstandig bzw.	
						kovalent	
ZnO	0,62	GaAs	0,31	LiF	0,92		
ZnS	0,62	GaSb	0,26	NaCl	0,94		
ZnSe	0,63			RbF	0,96		
ZnTe	0,61	CuCl	0,75	Al_2O_3	0,63		
		CuBr	0,74	SiO ₂	0,51		
CdO	0,79			Si₃N₄	0,30		
CdS	0,69	AgCl	0,86				
CdSe	0,70	AgBr	0,85				
CdTe	0,67	Agl	0,77			[Schaumburg 1990	0]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 43, 12.04.2013

1.3 Chemische Bindungen Vergleich der ionischen, kovalenten und metallischen Bindung

Verbindungen der Hauptgruppenelemente: 1 + 17 : NaCl 2 + 16 : MgO Halbleiter: GaAs, InSb, SiC Moleküle: CH₄ Elementverbindungen: C, Si, Ge

Intermetallische Verbindungen Elementverbindungen der Metalle

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 44, 12.04.2013

1.3 Chemische Bindungen Exkurs: Van-der-Waals- und Wasserstoffbrückenbindung

Van-der-Waals-Bindung

Bindung aufgrund Ausbildung momentaner Dipolmomente

Wasserstoffbrücken-Bindung

Bindung aufgrund der permanenten Dipolmomente

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 45, 12.04.2013

1.3 Chemische Bindungen Typen kristalliner Feststoffe

Bindung	Teilchen	Elektronen- verteilung	Elektrische Eigenschaften	Typische Bindungsenergie	Beispiele
ionisch	Positive und negative lonen	Kugelförmig am Ion Iokalisiert	lonenleiter	800 kJ/mol	NaCl
kovalent	Atome	Zwischen 2 Atomen Iokalisiert	Isolator	600 kJ/mol	C (Diamant), SiC, Ge, AsIn
metallisch	Positive Ionen Bewegliche Elektronen	Völlig delokalisiert	Sehr guter elektrischer Leiter	100 kJ/mol	Cu, Ag, Pt, Fe
Van-der-Waals	Moleküle			50 kJ/mol	Paraffin
					[IWE]

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 46, 12.04.2013

Ende Vorlesung 1

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 47, 12.04.2013

1.4 Ideale Kristalle Einkristalline, polykristalline und amorphe Festkörper

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 48, 12.04.2013

1.4 Ideale Kristalle Punktgitter, Elementarzelle und Gitterkonstanten

Angabe der Fernordnung durch Punktegitter und Elementarzelle

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 49, 12.04.2013

1.4 Ideale Kristalle Kristallgitter-Typen

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 50, 12.04.2013

1.4 Ideale Kristalle Metalle: Kristallstrukturen (bei Raumtemperatur)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 51, 12.04.2013

1.4 Ideale Kristalle Metalle: Rasterelektronenmikroskopie von Atomebenen

1 Monolage Kupferatome zusätzlich

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 52, 12.04.2013

1.4 Ideale Kristalle Metalle: Räumlich dichteste Kugelpackungen

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 53, 12.04.2013

1.4 Ideale Kristalle Metalle: Hexagonales Gitter (hdp)

Hexagonal dichteste Kugelpackung (hdp) 74% Raumerfüllung Koordinationszahl 12

a, c = Gitterkonstanten d = Ionendurchmesser a = d $c = \sqrt{\frac{8}{3}} \cdot d$ $\frac{c}{a} = 1,633$ (ideal)

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 54, 12.04.2013

1.4 Ideale Kristalle Metalle: Kubisch flächenzentriertes Gitter (kfz)

www.iwe.kit.edu

[Callister 1994]

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 55, 12.04.2013

1.4 Ideale Kristalle Metalle: Kubisch raumzentriertes Gitter (krz)

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 56, 12.04.2013

1.4 Ideale Kristalle Applet: 3D Crystal Viewer

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 57, 12.04.2013

1.4 Ideale Kristalle Kovalente Bindung: Tetraedrische Koordination

Tetraedrische Koordination von Atomen

Diamantgitter

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 58, 12.04.2013

1.4 Ideale Kristalle Perowskit ABO₃

Anwendungen: nichtlineare Widerstände (PTC), SMD-Kondensatoren, piezoelektrische Sensoren und Aktoren, Pyrodetektoren, ferroelektrische Speicher

[Chiang 1997]

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 59, 12.04.2013

1.4 Ideale Kristalle Spinell AB₂O₄ (AO·B₂O₃)

O-Anionen: kfz- oder hdp-Packung

B-Kationen: größeres Kation in Oktaeder-Umgebung

A-Kationen: kleineres Kation in Tetraeder-Umgebung

Beispiele: A = Mg, Mn, Co, Ni, Zn B = Al, Cr, Fe, Mn, Co MgAl₂O₄ (Spinell), Fe₃O₄ (Fe³⁺Fe³⁺Fe²⁺O²⁻₄) (inverser Spinell)

Anwendungen: nichtmetallische, polykristalline Magnetwerkstoffe, Weichferrite und Hartferrite

[Chiang 1997]

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 60, 12.04.2013

1.4 Ideale Kristalle Fluorit AO₂

(kleine) Kationen in jedem zweiten O-WürfelO-Anionen:(große) Anionen in

A-Kationen:

kubischer Kugelpackung Koordinationszahlen: 8 für Kation / 4 für Anion

Beispiel: ZrO₂, CeO₂

Anwendungen: ZrO₂ als Sauerstoff-Ionenleiter in der Lambda-Sonde, Regelung von Verbrennungsmotoren

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 61, 12.04.2013
1.5 Kristallfehler und reale Festkörper Übersicht der Kristallfehler

Dimension	Тур	Bildung / Ursache
0-dimensional (in 3 Dimensionen von atomarer Ausdehnung)	Eigenfehlordnung (Schottky, Frenkel)	thermodynamisch bedingt, d.h. temperaturabhängig
	Fremdstörstelle / Substitution (Verunreinigung)	unreines Ausgangsmaterial
1-dimensional (in 2 Dimensionen von atomarer Ausdehnung)	Stufenversetzung Schraubenversetzung	 herstellungsbedingt Wachstumsprozesse (intern) mechanische Beanspruchung (extern)
2-dimensional (in 1 Dimension von atomarer Ausdehnung)	Korngrenze Zwillingsebene Stapelfehler	
3-dimensional	Pore	

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 62, 12.04.2013

1.5 Kristallfehler und reale Festkörper Punktdefekte/ 0-dimensionale Kristallfehler (1)

In vielen Werkstoffen (z.B. Halbleitern) bestimmen Punktdefekte die elektrischen Eigenschaften.

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 63, 12.04.2013

1.5 Kristallfehler und reale Festkörper Punktdefekte/ 0-dimensionale Kristallfehler (2)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 64, 12.04.2013

1.5 Kristallfehler und reale Festkörper Kröger-Vink-Notation zur Beschreibung von Defekten

Prof. Dr.-Ing: Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 65, 12.04.2013

1.5 Kristallfehler und reale Festkörper Beispiele für Kröger-Vink-Notation

Bezugsgitter	Notation	Beschreibung (Ladungen relativ zum Gitterplatz)
Silizium	P _{Si}	Phosphor auf Silizium-Gitterplatz
	P [●] _{Si}	einfach positiv geladenes P auf Si-Gitterplatz
	$\left[P^{\bullet}_{Si}\right]$	Konzentration der einfach positiv geladenen P-Atome auf Si-Plätzen (entspricht Konzentration ionisierter Donatoren bei Halbleitern)
	[e']	Konzentration freier Elektronen (<i>n</i> bei Halbleitern)
	AI'_{Si}	einfach negativ geladenes Aluminium auf Si-Gitterplatz
BaTiO ₃	Ni ^{//} Ti Sr ^x _{Ba}	zweifach negativ geladenes Nickel auf Titanplatz neutrales Strontium auf Bariumplatz
	$\left[V_{O}^{\bullet}\right]$	Konzentration der zweifach positiv geladenen Sauerstoffleerstellen

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

1.5 Kristallfehler und reale Festkörper Schottky- und Frenkel-Fehlordnung

Schottky-Defekte: Kristallvolumen wird vergrößert

Frenkel-Defekte: Kristallvolumen bleibt konstant

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 67, 12.04.2013

1.5 Kristallfehler und reale Festkörper Frenkel-Fehlordnung

Bezugsgitter aus Atomen A

Ausbildung von Frenkelpaaren

Atom (Ion) auf Zwischengitterplatz hinterlässt Leerstelle im Gitter

Zwischengitterplätze können nur von Atomen/Ionen mit relativ kleinen Radien eingenommen werden

Frenkel-Fehlstellen im Gleichgewichtszustand:

$$[V_A] = [A_i] = N_0 \cdot \exp\left(-\frac{W_{Fr}}{kT}\right)$$

W_{Fr} Frenkel-Fehlordnungsenergie

- *N*₀ Dichte der Gitterplätze
- k Boltzmannkonstante

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 68, 12.04.2013

1.5 Kristallfehler und reale Festkörper Schottky-Fehlordnung

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 69, 12.04.2013

1.5 Kristallfehler und reale Festkörper Verunreinigungen und Leerstellen

 $\mathsf{KCI} + \mathsf{CaCI}_2 \to \mathsf{K}_{\mathsf{K}} + \mathsf{Ca}^{\bullet}_{\mathsf{K}} + 3\mathsf{CI}_{\mathsf{CI}} + \mathsf{V'}_{\mathsf{K}}$

Randbedingung: Erhaltung der elektrischen Neutralität im Kristall erfolgt durch die Bildung von Leerstellen (Ladungskompensation).

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 70, 12.04.2013

1.5 Kristallfehler und reale Festkörper Einkristalline und polykristalline Werkstoffe

Polykristall **Einkristall** Si (Silizium) NaCl (Kochsalz) BasisØ 15 cm [Tipler 1994]

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 71, 12.04.2013

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 72, 12.04.2013

1.5 Kristallfehler und reale Festkörper Korngrenze im Materialsystem Y_{0.16}Zr_{0.84}O₂

Y_{0.16}Zr_{0.84}O₂ Yttrium stabilisiertes Zirkonoxid High Resolution Transmissionselektronenmikroskopie

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 73, 12.04.2013

1.5 Kristallfehler und reale Festkörper Einlagerung von Fremdatomen entlang einer Korngrenze

Si₃N₄ Siliziumnitrid mit Yb₂O₃-Verunreinigung Transmissionselektronenmikroskopie

Si₃N₄ Siliziumnitrid mit ZrO₂-Verunreinigung Transmissionselektronenmikroskopie

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 74, 12.04.2013

1.5 Kristallfehler und reale Festkörper Volumen-, Grenz- und Oberflächeneigenschaften

Phasengrenz- und Oberflächeneigenschaften

von Werkstoffen: elektronisch: Raum- und Oberflächenladungen Anwendung: Halbleiterbauelemente (p-n-Übergänge) Varistoren (Flächen- und Raumladungen an Korngrenzen) Gassensoren (Oberflächenladungen, Volumen-Verarmungsrandschichten) eigenschaften mechanisch: Oberflächenspannung optisch: **Reflexion**, Brechung Phasengrenze Anwendung: zwischen 2 Phasen Lichtwellenleiter

[Waser]

Phasengrenze zwischen Werkstoff (-oberfläche) und Vakuum \bigcirc Phasengrenze zwischen Werkstoff bzw. Korngrenze (-oberfläche) und Gas

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 75, 12.04.2013

1.5 Kristallfehler und reale Festkörper Kristalline und Glasförmige Festkörper

Amorph (nur Nahordnung vorhanden)

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 76, 12.04.2013

1.5 Kristallfehler und reale Festkörper Gläser

Amorpher Festkörper (Glas)

Der Übergang von der Schmelze zum Glas erfolgt über eine unterkühlte Flüssigkeit und das Volumen ändert sich kontinuierlich ($V_{Glas} > V_{Kristall}$).

 T_g Glastransformationstemperatur
bei einer Viskosität von 10^{12} Pas $T > T_g$ unterkühlte Flüssigkeit, d.h. Schmelze $T < T_g$ Glas, d.h. amorpher Festkörper

Kristalliner Festkörper

Beim Übergang von der Schmelze zum Kristall erfolgt eine diskontinuierliche Volumenänderung bei T_S .

Im physikochemischen Sinn ist Glas eine eingefrorene, unterkühlte Flüssigkeit

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 77, 12.04.2013

1.5 Kristallfehler und reale Festkörper Netzwerkhypothese

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 78, 12.04.2013

1.5 Kristallfehler und reale Festkörper Glassorten und deren Eigenschaften

Eigenschaften

→ einstellbar über

Zusammensetzung

- Glastransformationstemperatur T_q
- thermischer Ausdehnungskoeffizient α
- Farbe
- Brechungsindex *n*
- Dielektrizitätszahl ε und Verlustwinkel δ
- elektrische Leitfähigkeit σ

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 79, 12.04.2013

1.5 Kristallfehler und reale Festkörper Anwendungsbeispiele in der Elektrotechnik

Produkt	Eigenschaft	Anwendung
Glasseide (Faser, \varnothing wenige μ m)	gute Isolation hohe Wärmebeständigkeit	Isolation von Drähten und Kabeln
Glasisolatoren	gute Isolation	Durchführungen
Glasuren	gute Isolation korrosions- und thermoschockbeständig	Schutzglasur für Hochspannungsisolatoren
Glaslote	angepasster Ausdehnungskoeffizient korrosions- und temperaturbeständig Haftung auf Substrat	IC-Dickschichtschaltungen (Glaslot + Metallpulver)
Lichtleiterfaser (Faser, Ø ca. 100 μm)	unempfindlich gegen elektromagnetische Störungen große Bandbreite geringe Dämpfung (wenige dB/km)	optische Nachrichten- übertragung (Bordnetze im Flugzeug Datenbusse im PC)
Glassubstrate	plan dünn 0,7 mm bei 2 m x 2 m	LCD-Displays

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 80, 12.04.2013

1.5 Kristallfehler und reale Festkörper Einführung Kunststoffe/Polymere am Bsp. Polyethylen (PE)

Organische Verbindungen

Es existieren über 1 Million organische Kohlenstoffverbindungen

Kunststoffe sind synthetisierte organische Verbindungen

Kohlenstoff C bildet kovalente Bindungen mit wenigen Elementen H, O, N, S, P den Halogenen (17. Gruppe)

Kettenmoleküle sind kovalente Bindungen vieler Kohlenstoffatome und Partner (10³...10⁵ Grundbausteine)

Polymer

räumliche Molekülstruktur aus Monomeren

Monomer

kleinstes, als Molekül stabiles, sich im Kunststoff wiederholendes Strukturelement

www.iwe.kit.edu

1.5 Kristallfehler und reale Festkörper Übersicht der Monomere üblicher Kunststoffe/ Polymere

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 82, 12.04.2013

1.5 Kristallfehler und reale Festkörper Verbindung zwischen Polymeren

• O- oder S-Atom

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 83, 12.04.2013

1.5 Kristallfehler und reale Festkörper Einteilung der Kunststoffe/ Polymere

- lineare Ketten
- elastisch/plastisch verformbar bei 100...300 °C

PE, PVC, PTFE, PP

 \rightarrow Isolierstoffe

Duroplaste

- räumlich vernetzte Ketten
- große Festigkeit formstabil, temperaturbeständig
 Epoxidharz, Polyester
- \rightarrow Vergussmassen, Gehäuse

Elastomere

• O- oder S-Atom

- schwach vernetzte Ketten, über O- oder S-Atome Modifikation der Thermoplaste
- weichelastisch (gummiartig) bis zur Zersetzung

Silikon, Neopren, Gummi

 \rightarrow Draht/Kabel-Ummantelung

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

1.5 Kristallfehler und reale Festkörper Innovative Anwendungen leitfähiger Polymere in der Elektrotechnik

[www.krempel-group.com]

Polymer Flächen-LEDs

[Covion Organic Semiconductors GmbH]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 85, 12.04.2013

Ende Vorlesung 2

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 86, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Erster Hauptsatz der Thermodynamik

Hermann v. Helmholtz * 1821 † 1894

1. Hauptsatz

(Energieerhaltungssatz 1842/47): Die Energie eines abgeschlossenen Systems ist konstant. Sie kann weder erzeugt noch vernichtet werden.

Lediglich Umwandlung verschiedener Energieformen (Wärmemenge Q, mechanische Energie W, etc.) Bsp: Gas im Kolben $\Delta U = W + Q$

Julius Robert Mayer * 1814 † 1878

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 87, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Zustandsgrößen und Entropie

Zustandsgröße X In einem Zustand hat die Größe X einen festen Wert (mathematisch beschreibbar durch ein totales Differential dX).

 $\rightarrow \oint dX = 0$

Wärme und Arbeit sind keine Zustandsgrößen.

Problem: Wärme ist keine Zustandsgröße, sondern eine Prozessgröße. Die Wärmemenge *Q*, die nötig ist, um ein System von einem Zustand A in B überzuführen, ist nicht eindeutig.

Jedoch ist die Größe $S = \frac{\partial Q_{rev}}{T}$ ist Zustandsgröße.

Man bezeichnet sie als Entropie. Irreversible Prozesse produzieren Entropie. Bei reversiblen Prozessen wird keine Entropie erzeugt.

(Insbesondere beim Kreisprozess gilt: $\oint dS = 0$

Die Verwendung von Entropie *S* statt Wärme *Q* zur Beschreibung thermodynamischer Vorgänge ist sinnvoll.

Boltzmann liefert statistischen Ausdruck für Entropie: $S = k \cdot \ln \Omega$ Ω : Anzahl der Realisierungsmöglichkeiten des Zustands

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 88, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Zweiter Hauptsatz der Thermodynamik

Sadi Carnot * 1796 † 1832

2. Hauptsatz

Die Entropie eines abgeschlossenen Systems strebt einem Maximum zu.

Beispiele

- Defektbildung im Festkörper
- Vermischung von Gasen
- Unordnung in Kinderzimmer
- etc.

Physikalische Gesetze sind zeitinvariant. Doch der 2. Hauptsatz definiert irreversible Prozesse: Durch die Zunahme der Entropie ist eine Zeitrichtung vorgegeben.

Rudolf Clausius * 1822 † 1888

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 89, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Entropie und Boltzmann-Faktor (1)

Boltzmann: $S = k \cdot \ln \Omega$ Ω : Anzahl der Realisierungsmöglichkeiten / k: Boltzmannkonstante

Beispiel: N Teilchen auf N Plätze zu verteilen, wobei unter den N Teilchen N_1 , N_2 , ..., N_i identische sind.

$$\rightarrow S = k \cdot \ln \Omega = k \cdot \ln \frac{N!}{N_1! N_2! \cdots N_i!}$$

Betrachte Übergang von Atomen im Grundzustand A_0 in den n-ten angeregten Zustand A_n . Für die Entropie vor dem Übergang gilt:

$$S_{\text{vorher}} = k \cdot \ln \Omega = k \cdot \ln \frac{N!}{A_0! A_1! \cdots A_n! \cdots}$$

A_k : Anzahl der Atome im k-ten Zustand

 $A_0 \rightleftharpoons A_n$

Nach dem Übergang vermindert sich die Zahl der Atome im Grundzustand um eins, die Zahl der Atome im n-ten Zustand ist um eins erhöht.

$$S_{\text{nachher}} = k \cdot \ln \frac{N!}{(A_0 - 1)!A_1!\cdots(A_n + 1)!\cdots}$$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

1.6 Exkurs in die Gibbs'sche Thermodynamik Entropie und Boltzmann-Faktor (2)

Die damit verbundene Entropieänderung beträgt:

$$\Delta S_{0\to n} = S_{\text{nachher}} - S_{\text{vorher}} = k \cdot \ln \frac{N!}{(A_0 - 1)! A_1! \cdots (A_n + 1)! \cdots} - k \cdot \ln \frac{N!}{A_0! A_1! \cdots A_n! \cdots} = k \cdot \ln \frac{A_0}{A_n + 1}$$

Für große Zahlen ist $A_n + 1 \approx A_n$, daher gilt $\Delta S_{0\to n} \approx k \cdot \ln \frac{A_0}{A_n}$

Andererseits muss beim Übergang in einen höherenergetischen Zustand das System die mit der Energieaufnahme ΔE aus der Umgebung verbundene Entropieaufnahme $\Delta S = \Delta E / T$ mindestens kompensieren. Im Gleichgewicht gilt demnach:

$$\frac{\Delta E}{T} + \Delta S_{0 \to n} = 0 \to \frac{\Delta E}{T} = -k \cdot \ln \frac{A_n}{A_0}$$
Boltzmann-Faktor
$$A_n = A_0 \cdot \exp\left(-\frac{\Delta E}{kT}\right)$$

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 91, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Definition: extensive und intensive Größen

Physikalisches System (z. B. Gas in Behälter)

Physikalische Größen heißen **extensiv**, wenn sich ihre Werte bei Zusammensetzung zweier identischer Systeme verdoppeln. Bleiben sie gleich, sind die Größen **intensiv**.

Beispiele:

extensive Größe: $Y_{A'} = 2 \cdot Y_A$

intensive Größe: $x_{A'} = x_A$

Volumen *V*, Entropie *S*, Ladung *Q*, Teilchenzahl *N*,...

Druck p, Temperatur T, elektrisches Potential Φ , chemisches Potential μ ,...

Josiah Willard Gibbs (1839-1903)

www.iwe.kit.edu

1.6 Exkurs in die Gibbs'sche Thermodynamik Formalismus der Gibbs'schen Fundamentalform

Der Energiesatz stellt die innere Energie *E* als Summe aus all diesen Energieformen dar:

Gibbs'sche Fundamentalform $dE = -pdV + TdS + \Phi dQ + \mu dN + ...$

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 93, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Gleichgewicht, Nichtgleichgewicht und Ausgleichsvorgänge

Gibbs'sche Fundamentalform:
$$dE = -pdV + TdS + \Phi dQ + \mu dN + ... = \sum_{i} x_i dY_i$$

Ein System befindet sich im Gleichgewicht, wenn die intensiven Variablen aller Teilsysteme gleich sind.

Gleichgewichtsbedingung: $x_{i,1} = x_{i,2}$

Im Nichtgleichgewicht gleichen sich die intensiven Variablen x_i an, indem die entsprechenden extensiven Größen Y_i ausgetauscht werden. zwei Teilsysteme im Kontakt:

Beispiele:

- Thermometer (1) im Kontakt mit Probe (2)
- Gasbehälter mit beweglicher Zwischenwand
- zwei elektrische Leiter im Kontakt

falls $T_1 > T_2 \rightarrow \Delta S_{1\rightarrow 2}$ \Rightarrow thermisches Gleichgewicht erreicht durch Austausch von Entropiefalls $p_1 > p_2 \rightarrow \Delta V_{1\rightarrow 2}$ \Rightarrow Druckgleichgewicht erreicht durch Austausch von Volumenfalls $\Phi_1 > \Phi_2 \rightarrow \Delta Q_{1\rightarrow 2}$ \Rightarrow elektrisches Gleichgewicht erreicht durch Austausch von Ladung

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

1.6 Exkurs in die Gibbs'sche Thermodynamik Elektrochemisches Potential

Gibbs'sche Fundamentalform: $dE = -pdV + TdS + \Phi dQ + \mu dN + ... = \sum x_i dY_i$

Das chemische Potential μ drückt die Neigung eines Stoffes aus, sich umzuwandeln (chemische Reaktion, Verdampfung,...) bzw. sich im Raum umzuverteilen (Diffusion).

Im Falle elektrisch geladener Teilchen (Ladungsträger), Kopplung von Ladung an Teilchen:

 $dE = -pdV + TdS + \Phi dQ + \mu dN + \dots$ $dQ = ze_0 dN \rightarrow \tilde{\mu} = ze_0 \Phi + \mu$ elektrochemisches Potential

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 95, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Zusammenhang zur Fermienergie

Kontaktspannung

Beim Kontakt zweier Metalle gehen Elektronen von Metall 2 mit geringerer Austrittsarbeit (= höheres chemisches Potential) in das Metall 1 über. Dadurch bildet sich die Kontaktspannung U.

Gleichgewichtsbedingung für geladene Teilchen ist die Angleichung des elektrochemischen Potentials:

$$\tilde{\mu}_{1} = \tilde{\mu}_{2} \longrightarrow e_{0}\Phi_{1} + \mu_{1} = e_{0}\Phi_{2} + \mu_{2}$$
$$-e_{0}(\Phi_{1} - \Phi_{2}) = \mu_{1} - \mu_{2}$$
$$\longrightarrow e_{0}U = \mu_{2} - \mu_{1} = W_{A2} - W_{A}$$

Elektrochemisches Potential entspricht der Fermienergie, chemisches Potential entspricht der Austrittsarbeit.

www.iwe.kit.edu

1.6 Exkurs in die Gibbs'sche Thermodynamik Nichtgleichgewicht des elektrochemischen Potentials

Elektrochemisches Potential: $\tilde{\mu} = ze_0 \Phi + \mu$

Allgemeine Formulierung eines Nichtgleichgewichts-Vorgangs:

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 97, 12.04.2013
1.6 Exkurs in die Gibbs'sche Thermodynamik Teilchendiffusion (1)

Näherungsweise gilt:

$$\nabla \mu = \frac{kT}{N} \cdot \nabla N$$

Bewegung eines Atoms in eine Leerstelle

- $\Delta \mu$ chem. Potentialdifferenz
- N Anzahl der Gitterplätze pro mol
- *∆W* Aktivierungsenergie

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 98, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Teilchendiffusion (2)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 99, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Diffusion von Dotierungen von der Oberfläche ins Volumen

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 100, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Analogie zwischen elektrischer Leitung und Diffusion

Physikalischer Effekt	"Triebkraft" (intensive Größe)	zugehörige extensive Größe	Gesetz
Elektrische Leitung	elektrisches Potential Φ (Spannung)	elektrische Ladung Q	Ohmsches Gesetz $\vec{i}_{e} \propto -\nabla \Phi$
$+ \underbrace{ }_{j_Q}^{0 - \psi_1 - \psi_2} - _{j_Q}^{0 - \psi_1 - \psi_2} - _{j_Q}^{0 - \psi_1 - \psi_2} - _{j_Q}^{0 - \psi_2 - \psi_$			$j_Q \propto -\sqrt{\Phi}$ $\vec{j}_Q = -\sigma \nabla \Phi$
			\vec{j}_Q : Stromdichte
			σ : Leitfähigkeit
Diffusion	chemisches Potential μ	Teilchenzahl N	erstes Ficksches
$\nabla \mu$		(Konzentration <i>c</i>)	Gesetz $\vec{j}_{\text{Diff}} \propto -\nabla \mu$
$N(x_1) \xrightarrow{i} N(x_2)$			Für verdünnte Lösungen: $\vec{j}_{Diff} = -D\nabla c$
→ X			<i>D</i> : Diffusionskoeffizient

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 101, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Defektbildung in Kristallen (1)

Der ideale Kristall A ist energetisch am günstigsten. Wieso bilden sich bei einem realen Kristall (B) dennoch Fehlstellen?

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 102, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Defektbildung in Kristallen (2)

Innere Energie: $dE = -pdV + TdS + \mu dN + ... \rightarrow E = E(V, S, N, ...)$

Charakteristische Variable der Energie *E* sind Volumen *V*, Entropie *S* und Teilchenzahl *N*. Betrachtet man ein System unter der Bedingung, dass diese charakteristischen Variablen *V*, *S*, *N* konstant sind, so wird ein Gleichgewicht beschrieben durch die **Minimierung** der Energie *E*.

Von praktischer Bedeutung ist aber nicht der Fall konstanter Entropie, sondern der Fall konstanter Temperatur (Austausch von Entropie mit Umgebung zur Konstanthaltung der Temperatur).

Betrachte daher die Funktion $F = E - T \cdot S$

$$dF = dE - TdS - SdT$$

= -pdV + TdS + \mu dN + \ldots - TdS - SdT
= -pdV - SdT + \mu dN + \ldots

 \rightarrow *F* = *F*(*V*,*T*,*N*,...) **Zustandsfunktion der Freien Energie** *F*

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 103, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Defektbildung in Kristallen (3)

Fehlordnung im Kristall

Minimum der Freien Energie F: dF = dE - TdS - SdT = 0 T = const. = dE - TdS = 0Erzeugung von Leerstellen: $\begin{cases} dE > 0 \\ dS > 0 \end{cases}$

Je höher die Kristalltemperatur, desto stärker wird der Term TdS gewichtet.

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 104, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Weitere thermodynamische Zustandsfunktionen

Analog zur Freien Energie F lassen sich aus der inneren Energie E auch die Enthalpie H und die Freie Enthalpie G herleiten:

 $H = E + p \cdot V \qquad \rightarrow H = H(p, S, N, ...)$ $G = E - T \cdot S + p \cdot V \qquad \rightarrow G = G(p, T, N, ...)$

Bei chemischen Reaktionen sind meist *p* und *T* konstant. \Rightarrow Gleichgewichtsbedingung ist das Minimum der Freien Enthalpie: d*G* = 0

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 105, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Gleichgewicht einer chem. Reaktion/Massenwirkungsgesetz (1)

Reaktion ist bei konstantem Druck p und Temperatur T im chemischen Gleichgewicht, wenn die Änderung der Freien Enthalpie verschwindet, d.h. dG = 0:

$$dG(p,T,N) = Vdp - SdT + \mu_A dN_A + \mu_B dN_B + \mu_{AB_2} dN_{AB_2} = 0 \quad \rightarrow \mu_A dN_A + \mu_B dN_B = -\mu_{AB_2} dN_{AB_2} dN_{AB_2} = 0$$

Mit
$$dN_{A} + \frac{1}{2}dN_{B} = -dN_{AB_{2}}$$
 und $dN_{A} = \frac{1}{2}dN_{B}$ folgt: $\mu_{A} + 2\mu_{B} = \mu_{AB_{2}}$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 106, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Gleichgewicht einer chem. Reaktion/ Massenwirkungsgesetz (2)

Für verdünnte Lösungen gilt der Ansatz: $\mu = \mu_0 + kT \cdot \ln \frac{c}{c_0}$ *c*: Konzentrationen

$$\rightarrow \mu_{A,0} + kT \cdot \ln \frac{c_A}{c_{A,0}} + 2\mu_{B,0} + 2kT \cdot \ln \frac{c_B}{c_{B,0}} - \mu_{AB_2,0} - kT \cdot \ln \frac{c_{AB_2}}{c_{AB_2,0}} = 0$$

$$\ln \frac{c_A}{c_{A,0}} + 2\ln \frac{c_B}{c_{B,0}} - \ln \frac{c_{AB_2}}{c_{AB_2,0}} = \frac{\mu_{AB_2,0} - \mu_{A,0} - 2\mu_{B,0}}{kT} \quad \rightarrow \frac{c_A \cdot c_B^2}{c_{AB_2}} = \frac{c_{A,0} \cdot c_{B,0}^2}{c_{AB_2,0}} \exp\left(\frac{\mu_{AB_2,0} - \mu_{A,0} - 2\mu_{B,0}}{kT}\right)$$

Massenwirkungsgesetz (Guldberg/Waage, 1867) für die chemische Reaktion $A+2B \rightleftharpoons AB_2$

$$\frac{c_{AB_2}}{c_A \cdot c_B^2} = K(T) = k_0 \exp\left(-\frac{\Delta G}{kT}\right)$$

 ΔG : Freie Reaktionsenthalpie

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 107, 12.04.2013

1.6 Exkurs in die Gibbs'sche Thermodynamik Massenwirkungsgesetz in Kröger-Vink-Schreibweise

Die Konzentrationen der Edukte und Produkte im Gleichgewicht der chemischen Reaktion

 $n \cdot A + m \cdot B \rightleftharpoons A_n B_m$

ergeben sich aus dem Massenwirkungsgesetz.

- λG : Freie Reaktionsenthalpie
- k: Boltzmannkonstante
- T: absolute Temperatur
- k_0 : Konstante

Die stöchiometrischen Koeffizienten *n*, *m* erscheinen dabei als Potenzen der Teilchenkonzentration [A], [B]. Beispiel: Bildung von Schottky-Defekten

In Kröger-Vink-Notation lautet die Bildung von Schottky-Punktdefekten der Atomsorte A:

$$A_A \rightleftharpoons A_A + V_A$$

Anwendung des Massenwirkungsgesetzes:

$$\frac{[\mathsf{V}_{\mathsf{A}}] \cdot [\mathsf{A}_{\mathsf{A}}]}{[\mathsf{A}_{\mathsf{A}}]} = [\mathsf{V}_{\mathsf{A}}] = k_0 \cdot \exp\left(-\frac{\Delta G}{kT}\right)$$

(vergleiche Abschnitt Kristallfehler)

www.iwe.kit.edu

1.7 Thermische und mechanische Aspekte Wärmeübertragung durch Wärmeleitung

Wärmeleitung durch Gitterschwingungen (Phononen) Elektronen

Durchtretende Wärmeleistung P

Wärmestromdichte

 q_{v}

$$P = -\lambda \cdot A \cdot \frac{dT}{dx}$$

Fourier-Gesetz

$$\gamma = -\lambda_W \cdot \frac{dT}{dx}$$

λ: Wärmeleitfähigkeit (Einheit W/(m·K))

www.iwe.kit.edu

1.7 Thermische und mechanische Aspekte Wärmeleitfähigkeit verschiedener Stoffe

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 110, 12.04.2013

1.7 Thermische und mechanische Aspekte Wärmeübertragung durch Strahlung

Ausgetauschte Wärmeleistung PAB

Stefan-Boltzmann-Gesetz

 $P_{AB} = c \cdot \sigma \cdot A \cdot \left(T_A^4 - T_B^4\right)$

- *P_{AB}* von A an B abgegebene Strahlungsleistung
- σ Stefan-Boltzmann-Konstante (abgestrahlte Leistung eines schwarzen Strahlers)
- c Materialkonstante berücksichtigt geringere Abstrahlungsfähigkeit (0 < c < 1)

Josef Stefan * 1835 † 1893

Ludwig Boltzmann * 1844 † 1906

Wärmeaustausch durch Photonen

www.iwe.kit.edu

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 111, 12.04.2013

1.7 Thermische und mechanische Aspekte Wärmeübertragung durch Konvektion

Isaac Newton * 1643 † 1727

Wärmeübergang an Grenzfläche

Übergehende Wärmeleistung P

Newton-Gesetz $P_{K} = \alpha_{K} \cdot A_{O} \cdot (T - T_{U}) = G_{th} \cdot (T - T_{U})$

- T: Temperatur des Körpers
- *T_U* : Temperatur des umgebenden Mediums
- *G_{th}* : Wärmeleitwert
- *α_K* : Wärmeübergangszahl (Materialkonstante)
- A_O: Oberfläche des Körpers

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 112, 12.04.2013

1.7 Thermische und mechanische Aspekte Vergleich der abgeführten Leistungen

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 113, 12.04.2013

1.7 Thermische und mechanische Aspekte Wärmezeitkonstante und spezifische Wärmekapazität

Exponentieller Anstieg und Abfall mit Zeitkonstanten τ_{th}

Aus dem Anstieg zum Zeitpunkt
$$t = 0$$
 folgt $\tau_{th} = c \cdot m \cdot \frac{\vartheta_0 - \vartheta_U}{P}$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 114, 12.04.2013

1.7 Thermische und mechanische Aspekte Beiträge zur Wärmekapazität

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 115, 12.04.2013

1.7 Thermische und mechanische Aspekte Thermische Ausdehnung von Werkstoffen

Mit steigender Temperatur T nimmt das Gitter Schwingungsenergie auf (W_1, W_2, W_3) .

Aufgrund der Asymmetrie in der potentiellen Energie verändert sich die Gleichgewichtslage, um die die Atome schwingen.

⇒ Gitterkonstante *a* wird größer.

Beschreibung durch thermischen Ausdehnungskoeffizienten.

[Callister 1994]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

1.7 Thermische und mechanische Aspekte Thermischer Ausdehnungskoeffizient und Grüneisensche Regel

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 117, 12.04.2013

1.7 Thermische und mechanische Aspekte Arten mechanischer Beanspruchung (1)

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 118, 12.04.2013

1.7 Thermische und mechanische Aspekte Arten mechanischer Beanspruchung (2)

Zug, Druck		Scherung	
mechanische Spannung	$\sigma_{M} = \frac{F}{A_{0}}$	Scherspannung	$\tau_M = \frac{F}{A_0}$
Dehnung / Kompression	$\varepsilon_M = \frac{\Delta I}{I_0}$	Scherung	$\gamma_M = \tan \theta$
Elastizitätmodul E	$\sigma_M = E_M \cdot \varepsilon_M$	Schubmodul G	$\tau_M = G_M \cdot \gamma_M$
Querkontraktionszahl (Poissonzahl)	$v_{M} = -\frac{\Delta A/A_{0}}{2 \cdot \Delta I/I_{0}}$		[Callister 1994]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 119, 12.04.2013

1.7 Thermische und mechanische Aspekte Elastische Module isotroper, metallischer Werkstoffe

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 120, 12.04.2013

1.7 Thermische und mechanische Aspekte Spannungs-Dehnungs-Diagramm (1)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 121, 12.04.2013

1.7 Thermische und mechanische Aspekte Spannungs-Dehnungs-Diagramm (2)

57,15 mm

(verringerter Querschnitt)

(21/4~)

d = 19,05 mm ---(3/4´´) 50,8 mm (2′′) (Messlänge) [http://www.techfak.uni-kiel.de/matwis/amat/] d = 11,38 mm -----

Normprobe beim Zugversuch

Video: Zugversuch (Zinkstab)

www.iwe.kit.edu

[Callister 1994]

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 122, 12.04.2013

(0,505'')

1.7 Thermische und mechanische Aspekte Verschiedene Typen von Spannungs-Dehnungs-Diagrammen

www.iwe.kit.edu

V1-V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 123, 12.04.2013

1.7 Thermische und mechanische Aspekte Veränderung des Gefüges durch plastische Verformung

Lichtmikroskopie am Werkstoff Stahl

300 ∓m

Vorher: equiaxiale Körner

300 ∓m

Nachher: gestreckte Körner (Streckung parallel zur Verformungsrichtung)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

V1 - V3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 124, 12.04.2013

1.7 Thermische und mechanische Aspekte Anhang: Temperaturkoeffizienten

Der physikalische Temperaturkoeffizient einer Stoffeigenschaft Y ist definiert als normierte Ableitung nach der Temperatur.

$$TK_{Y} = \frac{1}{Y(T)} \cdot \frac{dY(T)}{dT} \qquad [TK] = \% \text{ K}^{-1}$$

Beispiele:

$$D = \text{konst.} \rightarrow TK_D = 0$$
$$R = A \cdot \exp\left(\frac{B}{T}\right) \rightarrow TK_R = -\frac{B}{T^2}$$
$$\sigma = e_0 \cdot n(T) \cdot \mu(T) \rightarrow TK_\sigma = TK_n + TK_\mu$$

Karlsruher Institut für Technologie

Der lineare/ technische Temperaturkoeffizient ist eine lineare Näherung des physikalischen Temperaturkoeffizienten in einem bestimmten Intervall um die Temperatur T_0 .

$$\alpha_{Y} = \frac{1}{Y(T_{0})} \cdot \frac{\Delta Y}{\Delta T} \qquad [\alpha] = \% \text{ K}^{-1}$$

$$AY = \frac{1}{Y_{0}(T_{0})} \cdot \frac{\Delta Y}{\Delta T} \qquad [\alpha] = \% \text{ K}^{-1}$$

$$AY = \frac{1}{Y_{0}(T_{0})} \cdot \frac{1}{T_{0}} + \frac{1}{T_$$

www.iwe.kit.edu

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

Werkstoffe der Elektrotechnik

Institut für

V 1 - V 3 Kapitel 1 - Atommodell Chem. Bindungen Kristalle.ppt, Folie: 125, 12.04.2013

Kapitel 2 Leiterwerkstoffe und ihre Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 1, 30.04.2013

Kapitel 2 Leiterwerkstoffe und ihre Bauelemente

- 2.1 Einführung
- 2.2 Klassische Bandleiter
- 2.3 Halbleitende Metalloxide
- 2.4 Elektronische Hoppingleiter
- 2.5 Ionische Hoppingleiter
- 2.6 Supraleiter

Kapitel 2, Folie: 2, 30.04.2013

2.1 Einführung Elektrische Leitfähigkeit von Werkstoffen

Definition: Leitfähigkeit

In linearer, isotroper Materie ist das angelegte elektrisches Feld E proportional zur fließenden Stromdichte J (Ohmsches Gesetz).

 $\vec{J} = \sigma \cdot \vec{E}$

 σ : elektrische Leitfähigkeit

Für den spezifischen Widerstand gilt: $\rho = \frac{1}{\sigma}$

Leitfähigkeit eines Materials

$$\sigma = \sum_{i} \sigma_{i} = \boldsymbol{e}_{0} \cdot \sum_{i} |\boldsymbol{z}_{i}| \cdot \boldsymbol{n}_{i} \cdot \boldsymbol{\mu}_{i}$$

- e₀ : Elementarladung
 - ; : Ladungszahl
- n_i : Konzentration
- μ_i : Beweglichkeit

der Ladungsträgerart *i* (Elektronen, Ionen, etc.)

Die physikalische Deutung dieser Beziehung, die Querempfindlichkeit der Leitfähigkeit zu anderen physikalischen Größen (z.B. Temperatur) und die Anwendung in Bauelementen ist Gegenstand des folgenden Kapitels.

www.iwe.kit.edu

Kapitel 2, Folie: 3, 30.04.2013

2.1 Einführung Modelle des Ladungstransports im Überblick

klassische Theorie	Bandleiter	Hoppingleiter	Supraleiter
Freies	Quasifreie	Lokalisierte	Elektronen in
Elektronengas	Elektronen/ Löcher	Ladungsträger	Cooper-Paaren
Geschwindigkeit gemäß Boltzmann- Verteilung (ideales Gas)	Besetzung gemäß Fermi-Verteilung (Quantentheorie)	Valenzaustausch, Beweglichkeit von Polaronen	Paarkopplung kompensiert Stöße am Atomgitter
Metalle (reine	Metalle, Halbleiter,	Halbleitende Metall-	Supraleitende Metalle,
Elektronenleiter)	Isolatoren	oxide, Ionenleiter	SL - Legierungen

www.iwe.kit.edu

Kapitel 2, Folie: 4, 30.04.2013

2.2 Klassische Bandleiter Übersicht: Spezifischer Widerstand und Leitfähigkeit

www.iwe.kit.edu

Kapitel 2, Folie: 5, 30.04.2013

2.1 Einführung Anwendung von Leiterwerkstoffen in Bauelementen (1)

Widerstände, Leiter und Kontakte

Resistive Temperatursensoren, NTC-Thermistoren und Thermoelemente

www.iwe.kit.edu

Kapitel 2, Folie: 6, 30.04.2013

2.1 Einführung Anwendung von Leiterwerkstoffen in Bauelementen (2)

Varistoren

Microstructure ZnO-Varistor

www.iwe.kit.edu

Kapitel 2, Folie: 7, 30.04.2013

2.1 Einführung Anwendung von Leiterwerkstoffen in Bauelementen (3)

Lambdasonden und resistive Abgassensoren

Supraleiter für magnetische Anwendungen

www.iwe.kit.edu

Kapitel 2, Folie: 8, 30.04.2013
2.2 Klassische Bandleiter Wegbereiter der klassischen Leitungstheorie

Paul Drude *1863 †1906 Im Jahre 1900, drei Jahre nach der Entdeckung des Elektrons durch Thomson, legte Paul Drude den Grundstein für ein Verständnis der elektrischen Leitfähigkeit, der Wärmeleitfähigkeit sowie den optischen Eigenschaften von Metallen.

[http://www.pdi-berlin.de/drude.pdf]

www.iwe.kit.edu

Kapitel 2, Folie: 9, 30.04.2013

2.2 Klassische Bandleiter Vorstellung der elektronischen Leitfähigkeit nach Drude

Die Elektronen werden durch das angelegte elektrische Feld beschleunigt. Beim Transport durch das Atomgitter werden die Elektronen an den Atomrümpfen gestreut. Die mittlere Zeit zwischen zwei Stößen ist die Stoßzeit. Zwischen den Stößen bewegen sich die Elektronen gemäß den klassischen mechanischen Bewegungsgleichungen auf parabolischen Bahnen. Die mittlere freie Weglänge ist in der Größenordnung des Gitterabstands.

www.iwe.kit.edu

Kapitel 2, Folie: 10, 30.04.2013

2.2 Klassische Bandleiter Gleichungen des Drude-Modells

 Beschleunigung des Elektrons zwischen zwei Stößen

 $a = \frac{e_0}{m} \cdot E$

• Mittlere Geschwindigkeit v des Elektrons

$$\overline{v} = v_D = \frac{e_0 \cdot E}{m} \cdot v$$

• Stromdichte

$$j = n \cdot e_0 \cdot v_D$$

Ohmsches Gesetz

 $j = \frac{n \cdot e_0^2 \cdot \tau}{m} \cdot E = \sigma \cdot E$

Beweglichkeit

Def:
$$\mu = \frac{v_D}{E} = \frac{e_0 \cdot \tau}{m}$$

• Ergänzung um Löcher (Defektelektronen)

$$\sigma = \sigma_e + \sigma_p = e_0 \cdot \left(n \cdot \mu_n + p \cdot \mu_p \right)$$

Allgemeine Leitfähigkeit:

$$\sigma_{\text{gesamt}} = \sum_{i} \sigma_{i} = \boldsymbol{e}_{0} \cdot \sum_{i} |\boldsymbol{z}_{i}| \cdot \boldsymbol{n}_{i} \cdot \mu_{i}$$

 e_0 : Elementarladung; *m*: Elektronenmasse; $v_m = v_D$: Driftgeschwindigkeit; *E*: el. Feldstärke; τ : mittlere Flugdauer zwischen Kollisionen; *n*, *p*: Ladungsträgerdichten; z_i : Ladungszahl

[Rudden 1995]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 11, 30.04.2013

2.2 Klassische Bandleiter Übersicht Eigenschaften von Metallen

Motall	ρ	μ^*	au *	L		
MELAN	10 ⁻⁶ Ωcm	cm²V⁻¹s⁻¹	10 ⁻¹⁴ s	10 ⁻⁸ V ² K ⁻²		
Ag	1,62	66	3,7	2,31		
Cu	1,68	44	2,5	2,28		
Au	2,22	48	2,7	2,38		
Al	2,73	13	0,7	2,22		
Na	4,74	50	2,8	2,23		
W	5,39	9,2	0,5	2,39		
Zn	6,12	7,8 (+)	0,4	2,37		
Cd	7,72	8,7 (+)	0,5	2,54		
Fe	9,71	3,8	0,2	2,39		
Pt	10,5	8,9	0,3	2,57		
Sn	12,2	3,5	0,4	2,62		
Pb	20,8	2,0 (+)	0,3	2,49		
	spezifischer Widerstand	Ladungsträger- beweglichkeit	Stoßzeit	Lorenz-Zahl		

Werte bei Raumtemperatur

(+) Löcherleitung

* Berechnet aus • mit Elektronendichten, die sich aus der Anzahl der Valenzelektronen s ergeben und effektiver Masse $m_n = m$

[Arlt 1989]

2.2 Klassische Bandleiter Regel nach Grüneisen für die Temperaturabhängigkeit der Leitfähigkeit

$$\rho \propto T \cdot G(\Theta_D / T)$$

$$G(x) = x^{-4} \cdot \int_0^x \frac{s^5}{(e^s - 1) \cdot (1 - e^{-s})} ds$$
Diese Funktion ergibt
Proportionalität zu
$$\rho \propto T \text{ für } T > \Theta_D$$

$$\rho \propto T^5 \text{ für } T < \Theta_D$$

$$x = \Theta_D / T$$

$$s = \text{Variable}$$

$$e = \text{Exponentialfunktion}$$

$$\Theta_D = \text{Debye-Temperatur}$$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 13, 30.04.2013

2.2 Klassische Bandleiter Regel nach Matthiessen für die Temperaturabhängigkeit der Leitfähigkeit

[Schaumburg 1990, Tipler 1994]

www.iwe.kit.edu

Kapitel 2, Folie: 14, 30.04.2013

2.2 Klassische Bandleiter

Leitfähigkeit von metallischen Werkstoffen bei tiefen Temperaturen

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 15, 30.04.2013

2.2 Klassische Bandleiter Widerstandserhöhung durch den Einbau von Fremdatomen

Faustregel

Je größer die Differenz der Ordnungszahlen zwischen den Atomsorten ist (Wirtsgitter und Fremdstoffe), desto größer ist die Erhöhung des elektrischen Widerstands.

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 16, 30.04.2013

2.2 Klassische Bandleiter Wiedemann-Franz-Gesetz und Lorenz-Zahl

Bekannt: gute elektrische Leiter sind auch gute Wärmeleiter

Empirischer Zusammenhang beschrieben durch:

Wiedemann-Franz-Gesetz

$$L = \frac{\lambda_W}{\sigma} \cdot \frac{1}{T}$$

L: Lorenz-Zahl in [V²K⁻²]

www.iwe.kit.edu

Kapitel 2, Folie: 17, 30.04.2013

2.2 Klassische Bandleiter Ableitung der Lorenz-Zahl und der therm. Leitfähigkeit für Metallen

- Drude-Theorie implizite Annahme: Wärmeleitfähigkeit wird vermittelt durch Elektronen
- Kopplung von Wärme- und Ladungstransport in Metallen und Halbleitern: "Thermokraft"
- In nichtmetallischen Festkörpern Wärmetransport durch Phononen

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 18, 30.04.2013

2.2 Klassische Bandleiter Übersicht Metalle

Gruppe	Element	ρ	$TK_{ ho}$	λw	Gruppe	Element	ρ	$TK_{ ho}$	λw
		[μΩcm]	[% / K]	[W/cmK]			[μΩcm]	[% / K]	[W/cmK]
1	Na	4,2		1,4	14	Sn	12	0,43	0,7
	K	6,2		0,9		Pb	21	0,35	0,4
11	Cu	1,7	0,43	4,0	8	Fe	9,7	0,65	0,7
	Ag	1,6	0,41	4,1		Со	6,2	0,60	0,7
	Au	2,2	0,40	3,1		Ni	6,8	0,69	0,9
2	Mg	4,5	0,41	1,4	5/6	Та	13	0,38	0,5
	Ca	3,9	0,42			Cr	14	0,30	0,7
						Мо	5,2	0,40	1,4
						W	5,5	0,40	1,6
12	Zn	5,9	0,42	1,1	9 / 10	Rh	4,5	0,42	0,9
	Cd	6,8	0,42	1,0		Pd	9,8	0,38	0,7
	Hg	97	0,08	0,08		Pt	9,8	0,39	0,7
13	AI	2,7	0,43	2,3					

[von Münch 1993]

www.iwe.kit.edu

Kapitel 2, Folie: 19, 30.04.2013

2.2 Klassische Bandleiter Grenzen des Drude-Modells

Drudes Annahmen können in der Festkörperphysik als Äquivalent zu den Bohrschen Postulaten betrachtet werden. Allerdings gibt es einige Fälle, in denen sich das Modell als unzureichend erweist:

1. Die <u>mittlere freie Weglänge</u> Δx und der Gitterabstand λ liegen **nicht** in der gleichen Größenordnung.

Bsp: λ (Kupfer, 300K) = 0.36 nm; aus $\Delta x = v_D \cdot \tau$

$$r = \frac{n \cdot e_0^2 \cdot \tau}{m}$$
 folgt Δx (Kupfer) = 2,9 nm.

2. Die experimentellen Werte für die <u>spezifischen Wärmekapazitäten</u> sind **kleiner** als die theoretischen Werte. Wahrscheinlich ist die von Drude benutzte Elektronenkonzentration zu groß, d.h. nur ein Bruchteil der Elektronen im Elektronengas scheint zur spezifischen Wärmekapazität beizutragen.

0

 In einer Vorstellungswelt nach Drude wird zwar intuitiv klar, dass bei erhöhter Temperaturmehr Stöße mit dem Gitter stattfinden und sich deshalb der beobachtete Widerstand erhöhen muss. Jedoch wird dieser Effekt nicht quantitativ modelliert, sondern findet sich lediglich implizit in der mittleren Flugzeit des Elektrons wieder.

[Rudden 1995]

www.iwe.kit.edu

Kapitel 2, Folie: 20, 30.04.2013

2.2 Klassische Bandleiter Entstehung von Energiebändern beim Übergang zum Festkörper (2)

www.iwe.kit.edu

Kapitel 2, Folie: 21, 30.04.2013

2.2 Klassische Bandleiter Bandschema von Kupfer (Cu)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 22, 30.04.2013

2.2 Klassische Bandleiter Entstehung von Energiebändern beim Übergang zum Festkörper (1)

www.iwe.kit.edu

Kapitel 2, Folie: 23, 30.04.2013

2.2 Klassische Bandleiter Besetzung gemäß Fermi- bzw. Boltzmann-Verteilung

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 24, 30.04.2013

2.2 Klassische Bandleiter Vergleich der Bandbesetzung bei Isolator, Halbleiter und Metall (1)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 25, 30.04.2013

2.2 Klassische Bandleiter Applet: Abhängigkeit von Fermi-Energie

[http://www.acsu.buffalo.edu/~wie/applet/fermi/sfw/show.html]

www.iwe.kit.edu

Kapitel 2, Folie: 26, 30.04.2013

2.2 Klassische Bandleiter Halbleitereffekt am Beispiel von Silizium bei T = 0 K

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 27, 30.04.2013

2.2 Klassische Bandleiter Halbleitereffekt am Beispiel von Silizium bei T = 0 K

www.iwe.kit.edu

Kapitel 2, Folie: 28, 30.04.2013

2.2 Klassische Bandleiter Halbleitereffekt am Beispiel von Silizium bei *T* > 0 K

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 29, 30.04.2013

2.2 Klassische Bandleiter Halbleitereffekt am Beispiel von Silizium bei *T* > 0 K

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 30, 30.04.2013

2.2 Klassische Bandleiter Halbleitereffekt am Beispiel von Silizium bei *T* > 0 K

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 31, 30.04.2013

2.2 Klassische Bandleiter Gleichungssatz für Eigenhalbleiter (1)

• Elektronenkonzentration *n* im Leitungsband

 $n = N_L \cdot e^{\frac{-(W_L - W_{Fi})}{kT}}$

• Löcherkonzentration p im Valenzband

$$p = N_V \cdot e^{\frac{-(W_{Fi} - W_V)}{kT}}$$

• Eigenleitungskonzentration n_i

 $n_i = N_{eff} \cdot e^{\frac{-\Delta W_G}{2kT}}$

• Fermi-Niveau im intrinsischen Halbleiter

$$W_{Fi} = W_V + \frac{1}{2}\Delta W_G + \frac{3}{4}kT \cdot \ln\frac{m_p}{m_n} \quad \text{mit} \quad W_L = W_V + \Delta W_G$$
$$W_{Fi} = W_V + \frac{1}{2}\Delta W_G \text{ ,wenn } m_p = m_n$$

• effektive Zustandsdichte des LB $N_L = 2 \cdot \left(\frac{2\pi \cdot m_n \cdot kT}{h^2}\right)^{\frac{3}{2}}$

effektive Zustandsdichte des VB

$$N_V = 2 \cdot \left(\frac{2\pi \cdot m_p \cdot kT}{h^2}\right)^{\frac{3}{2}}$$

• mittlere effektive Zustandsdichte

$$N_{eff} = \sqrt{N_L \cdot N_V}$$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 32, 30.04.2013

Institut für Verkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

2.2 Klassische Bandleiter Gleichungssatz für Eigenhalbleiter (2)

• Eigenleitung durch thermisch angeregte Elektron-Loch-Paare (intrinsische Leitfähigkeit)

 $\mu_n = \frac{e_0 \cdot \tau_n}{m_n}$

 $\sigma_i = n_i \cdot e_0 \cdot (\mu_n + \mu_p)$

 $\mu_p = \frac{e_0 \cdot \tau_p}{m_p}$

Beweglichkeit der Elektronen und Löcher

Temperaturabhängigkeit der Beweglichkeit

$$\mu_n \propto T^{-\beta_n} \qquad \mu_p \propto T^{-\beta_p}$$

itterdenen die Ladungen gestreut werden, was die Beweglichkeit reduziert.

• Einstein-Beziehung: Diffusionskoeffizient

www.iwe.kit.edu

Kapitel 2, Folie: 33, 30.04.2013

2.2 Klassische Bandleiter Einfluss von Dotierungen

Reale Kristalle haben stets Störungen

• Punktdefekte: Leerstellen, Fremdatome, Atome auf Zwischengitterplätzen

Reinheit von HL-Kristallen: 10¹⁰...10¹² / cm³ (Stand der Technik)

• Versetzungen: Abstände der Gitteratome sind gestört,

bevorzugte Anlagerung von Fremdatomen

geforderte Versetzungsdichte im Wafer:1 / cm²technisch realisierbare versetzungsarme Kristalle:103...104 / cm²

www.iwe.kit.edu

Kapitel 2, Folie: 34, 30.04.2013

2.2 Klassische Bandleiter Gegenüberstellung von intrinsischer und Störstellenleitung

www.iwe.kit.edu

Kapitel 2, Folie: 35, 30.04.2013

2.2 Klassische Bandleiter Donatoren und Akzeptoren

Donatoren Störstellen im Kristall, die Elektronen an das Leitungsband abgeben *n* - Leitung

Ionisierungsenergie*:
$$\Delta W_D = \frac{m_n \cdot e_0^4}{2 \cdot (4\pi \cdot \varepsilon_r \cdot \varepsilon_0 \cdot \hbar)^2} \quad \text{in Si:} \quad \begin{array}{l} P \quad \Delta W_D = 45 \text{ meV} \\ \text{Sb} \quad \Delta W_D = 39 \text{ meV} \\ \text{As} \quad \Delta W_D = 54 \text{ meV} \end{array}$$

Akzeptoren Störstellen im Kristall, die Elektronen aus dem Valenzband aufnehmen *p* - Leitung

Ionisierungsenergie*:
$$\Delta W_{A} = \frac{m_{p} \cdot e_{0}^{4}}{2 \cdot (4\pi \cdot \varepsilon_{r} \cdot \varepsilon_{0} \cdot \hbar)^{2}}$$
 in Si: B $\Delta W_{A} = 45 \text{ meV}$
Al $\Delta W_{A} = 67 \text{ meV}$
Ga $\Delta W_{A} = 72 \text{ meV}$

"flache" Störstellen und "tiefe" Störstellen (Haftstellen, traps) je nach tatsächlicher Ionisierungsenergie der Störstelle im Kristall

* Berechnung nach dem Wasserstoffmodell H
$$\rightarrow$$
 H⁺ + e⁻ $\implies \Delta W_{lon} = \frac{m_e \cdot e_0^4}{2 \cdot (4\pi \cdot \varepsilon_0 \cdot \hbar)^2} = 13,6 \text{ eV}$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 36, 30.04.2013

2.2 Klassische Bandleiter Zustandsdichte (z), Elektronendichte (n) und Löcherdichte (p)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 37, 30.04.2013

2.2 Klassische Bandleiter Temperaturabhängigkeit beim Störstellenhalbleiter

I: intrinsischer Bereich, E: Störstellenerschöpfung, R: Störstellenreserve

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 38, 30.04.2013

2.2 Klassische Bandleiter Gleichungssatz für Störstellenhalbleiter (1)

- extrinsischer (dotierter) Halbleiter
 - *n* dotierter (donatordotierter) Halbleiter

p - dotierter (akzeptordotierter) Halbleiter
 Im extrinsischen Halbleiter erzeugen Dotieratome

besetzbare Zustände in der Bandlücke W_G

Majoritäts- Minoritäts-Ladungsträger

Zustandsdichte
$$z(W_D) = N(W_D)$$
 bzw. $z(W_A) = N(W_A)$

 $\square N_D = N_D^0 + N_D^+ \qquad N_A = N_A^0 + N_A^-$

Im thermodynamischen Gleichgewicht ist der Halbleiter elektrisch neutral

 $\square N + N_A^- = p + N_D^+$

Berechnung der Konzentrationen von p und n

Elektronenkonzentration im Leitungsband (*n*) Löcherkonzentration im Valenzband (*p*)

$$\left. \begin{array}{l} n = \sqrt{N_D \cdot N_L} \cdot e^{\frac{-\Delta W_D}{2kT}} \\ p = \sqrt{N_A \cdot N_V} \cdot e^{\frac{-\Delta W_A}{2kT}} \end{array} \right.$$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 39, 30.04.2013

2.2 Klassische Bandleiter Gleichungssatz für Störstellenhalbleiter (2)

Löcherkonzentration p im Valenzband

$$p = \frac{1}{2} \left[(N_A^- - N_D^+) + \sqrt{(N_A^- - N_D^+)^2 + 4n_i^2} \right]$$
$$\Rightarrow p \approx \begin{cases} \sqrt{N_A N_V} \cdot e^{\frac{-\Delta W_A}{2kT}} & \text{(Reserve)} \\ N_A & \text{(Erschöpfung)} \end{cases}$$

Donator- und Akzeptorkonzentrationen N_D , N_A

Dichte der ionisierten Störstellen N_D^+ , N_A^-

Ionisierungsenergie $\Delta W_{\rm D}$ für Donatoren

$$\Delta W_D = \frac{m_n \cdot e_0^4}{2 \cdot (4\pi \cdot \varepsilon_r \cdot \varepsilon_0 \cdot \hbar)^2}$$

Ionisierungsenergie ΔW_A für Akzeptoren $\Delta W_A = \frac{m_p \cdot e_0^4}{2 \cdot (4\pi \cdot \varepsilon_r \cdot \varepsilon_0 \cdot \hbar)^2}$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 40, 30.04.2013

Werkstoffe	Ladungsträger- konzentration	Ladungsträger- beweglichkeit	ΔW_g	<i>T</i> = 0 K	<i>T</i> > 0 K				
Metalle	n = const	μ _n ~ Τ ^{-a}	0	Valenzband teilbesetzt	Valenzband nur teilbesetzt, daher sehr gute Leitfähigkeit				
Halbleiter	$n \sim e^{-\frac{W_g}{2kT}\star}$	μ _n ~ T ^{-a}	≤ 2 eV	Leitungsband leer	merkliche Leitfähigkeit				
Isolatoren	Isolatoren $n \sim e^{-\frac{W_g}{2kT}}$		≥ 2 eV	Leitungsband leer	vernachlässigbare Leitfähigkeit				
* Bandabstand W_G 100 kT bei 25 °C (kT = 0,025 eV bei 25 °C) [von Münch 1993									

www.iwe.kit.edu

Kapitel 2, Folie: 41, 30.04.2013

2.2 Klassische Bandleiter Bauelemente und Anwendungen klassischer Bandleiter

Übersicht der behandelten Anwendungen

- Leiter und Kontakte
- Widerstände
- Widerstandstemperatursensoren
- Thermoelemente
- Dehnmessstreifen

Ausblick: Leitfähige Polymere

Anwendungen klassischer Halbleiter

Kernfach: Halbleiterbauelemente (WS)

- Dioden, Transistoren
- Leistungshalbleiter, etc.

www.iwe.kit.edu

Kapitel 2, Folie: 1, 03.05.2013

2.2 Klassische Bandleiter Übersicht der Einsatzgebiete von Metallen in der Elektrotechnik

ſ	0.108	0.313	Leitfähigkeit in $10^6 \ 1/\Omega \ cm$						Kontakte Widerstä		stände	Mag	Magnetische		
	Li	Be						ລ 🗖	Leiter Stromquellen		quellen	Werkstoffe			
	179	1.040 1277		V DIALA											
	0.139/	0.226		Schmelz- temperatur in °C								0.377			
	0 <mark>.971</mark>	1.738										AI 2.702			
ļ	98	650										660			
	0.139	0.298	0.0177	0.0234	0.0489	0.0774	0.0070	0.0993	0.172	0.143	0.596	0.166	0.0678		
	K	Ca	SC	TI	V	Cr	Mn	Ге	Co	Ni	Cu	Zn	Ga		
	0.862	1.55	3.0	4.50	5.8	7.19	7.43	7.86	8.90	8.90	8.96	7.14	5.907		
	64	838	1539	1668	1900	1875	1243	1536	1495	1453	1083	419	30		
	0.0779	0.0762	0.0166	0.0236	0.0693	0.187	0.067	0.137	0.211	0.0950	0.630	0.138	0.116	0.0917	
	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	
	1.53	2.6	4.47	6.4	8.57	10.2	11.5	12.2	12.4	12.02	10.5	8.65	7.31	7.30	
ļ	39	768	1509	1852	2415	2620	2200	2500	1966	<mark>/1552</mark>	<mark>⁄961</mark>	<mark>/ 321</mark>	157	<mark>232</mark>	
	0.0489	0.030	0.0126	0.0312	0.0761	0.189	0.0542	0.109	0.197	0.0966	0.452	0.0104	0.0617	0.0481	
	Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	
	1.873	8.51	6.7	13.2	16.6	19.3	21.0	22.40	22.42	21.45	19.32	13.546	11.85	11.34	
	29	714	920	2222	2996	3410	3180	2700	2454	1773	1063	-38	303	327	

[Münch 1987]

www.iwe.kit.edu

Kapitel 2, Folie: 2, 03.05.2013

2.2 Klassische Bandleiter Anwendungen metallischer Leiterwerkstoffe

[Münch 1987]

Auswahlkriterien: spezifische Leitfähigkeit +, Gewicht, Festigkeit, Korrosionsbeständigkeit, Kosten

www.iwe.kit.edu

Kapitel 2, Folie: 3, 03.05.2013
2.2 Klassische Bandleiter Räumliche Leiteranordnungen: Kupfer (Cu) Kabel

www.iwe.kit.edu

Kapitel 2, Folie: 4, 03.05.2013

2.2 Klassische Bandleiter Ebene Leiteranordnung: Nickel (Ni) Dünnschicht auf polykrstallinem Substrat (YSZ)

н

2 µm

Physical vapor deposition (PVD) mit Maskentechnik Schichtdicke etwa 700 nm Schichtbreite etwa 10 µm

Veränderung der Ni-Schicht bei höheren Temperaturen (700 – 800 °C): → Kornwachstum durch Festkörperdiffusion

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

— 100 μm

www.iwe.kit.edu

Kapitel 2, Folie: 5, 03.05.2013

2.2 Klassische Bandleiter Ebene Leiteranordnung: koplanare Mikrowellenleiterstruktur (BST) als Dickschicht

www.iwe.kit.edu

Kapitel 2, Folie: 6, 03.05.2013

2.2 Klassische Bandleiter Ebene Leiteranordnungen: Elektromigration in Al

Elektromigration in Al

- a) Resultierende Kräfte auf die Metallionen $F_{Coulomb}$ angelegtes Feld F_{Impuls} Stöße mit Elektronen
- b) REM-Aufnahme einer100 % geschädigten Leiterbahn

Ursache:

Hohe thermische und mechanische Belastung der Leiterbahn (Dicke kleiner 100 nm) aufgrund hoher Stromdichten ($j = 10^{6}$ Acm⁻²) und Taktfrequenzen (GHz-Bereich)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 7, 03.05.2013

2.2 Klassische Bandleiter Ebene Leiteranordnungen: Median Time-to-Failure (MTF)

Lebensdauer von Leiterbahnen

Blacksche Gleichung Empirisch ermittelte Berechnungsformel für die mittlere Ausfallzeit von Leiterbahnen

 $MTF = A \cdot j^{-n} \cdot e^{\frac{E_A}{kT}}$

E_A Aktivierungsenergie

Materialzusammensetzung Diffusionsmechanismen

- *j* Stromdichte
- *n* Exponent ($n \approx 2$)
- A Faktor, in dem mehrere physikalische Parameter zusammengefasst sind.

Bestimmung der Aktivierungsenergie und des Exponenten durch Beschleunigte Lebensdauertests.

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 8, 03.05.2013

2.2 Klassische Bandleiter Metalle als Kontaktwerkstoffe (1)

Mikroskopischer Aufbau eines Metallkontaktes Typische Temperatur- und Spannungswerte für Erweichen / Schmelzen von Kontaktwerkstoffen

+ 111 + + 11 + + 11 + 11	Metall	Erweichen		Schmelzen	
Stromfluss		°C	U/V	°C	U/V
	Sn	100	0,07	232	0,13
punkte	Au	100	0,08	1063	0,43
Grenzfläche	Ag	150-200	0,09	968	0,37
	AI	150	0,1	660	0,3
$\left \frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \right) \right \frac{1}{2} $	Cu	190	0,12	1083	0,43
	Ni	520	0,22	1453	0,53
	W	1000	0,6	3380	1,1

Anforderungen: geringer Übergangswiderstand, Beständigkeit gegen Materialwanderung ("Kleben") und "Abbrand" beim Schalten unter Last

[Schaumburg 1990]

www.iwe.kit.edu

Kapitel 2, Folie: 9, 03.05.2013

2.2 Klassische Bandleiter Mikrostruktureller Umbau an der Kontaktfläche unter Belastung

www.iwe.kit.edu

Kapitel 2, Folie: 10, 03.05.2013

2.2 Klassische Bandleiter Metalle als Kontaktwerkstoffe (2)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 11, 03.05.2013

2.2 Klassische Bandleiter Anwendung: Metallschichtwiderstand/ Kohleschichtwiderstand

www.iwe.kit.edu

Kapitel 2, Folie: 12, 03.05.2013

2.2 Klassische Bandleiter Werkstoffe für temperaturstabile Präzisionswiderstände (1)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 13, 03.05.2013

2.2 Klassische Bandleiter Werkstoffe für temperaturstabile Präzisionswiderstände (2)

Werkstoff	Legi	erungsel	emente	Grenz-	ρ	$\mathit{TK}_{ ho}$	Thermospannung
	i	n Gewich	ts%	temperatur			gegen Kupfer *
	Mn	Ni	AI	in °C	in $\mu\Omega$ cm	in K ⁻¹	in μV/K
CuMn12Ni2	12	2	-	140	43	± 1·10 ⁻⁵	- 0,4
CuNi20Mn10	10	20	-	300	49	± 2·10 ⁻⁵	- 10
CuNi44	1	44	-	600	49	+ 4.10-4	- 40
						- 8·10 ⁻⁴	
CuMn2Al	2	-	0,8	200	12	4·10 ⁻⁴	+ 0,1
CuNi30Mn	3	30	-	500	40	1.10-4	- 25
CuMn12NiAl	12	5	1,2	500	40	~ 10 ⁻⁵	- 2
alle Werte gelte	n bei T	= 20 °C	* Seebe	eck-Koeffizient			[Münch 1987

Auswahlkriterien: Hoher spez. Widerstand ρ , Langzeitstabilität, definiert einstellbarer und sehr niedriger Temperaturkoeffizient TK_{ρ} , geringe Thermospannung gegen Kupfer- Legierungen

www.iwe.kit.edu

Kapitel 2, Folie: 14, 03.05.2013

2.2 Klassische Bandleiter Übersicht: Anwendung von Metallen in der Messtechnik

www.iwe.kit.edu

Kapitel 2, Folie: 15, 03.05.2013

2.2 Klassische Bandleiter Bauelement: resistive, metallische Temperatursensoren

Metall	<i>ρ_{sp}</i> [x10 ⁻⁸ Ωm]	<i>TK</i> [x10 ⁻³ K ⁻¹]
Platin (Pt)	10,6	3,92
Kupfer (Cu)	1,67	4,33
Nickel (Ni)	6,84	6,75

 ρ_{sp} = Spezifischer Widerstand TK = Temperatur-Koeffizient

 $R(T) = R_0 \cdot (1 + A \cdot T + B \cdot T^2)$ $A = 3.90802 \ 10^{-3} \ ^{\circ}\text{C}^{-1}$ $B = -5.802 \ 10^{-7} \ ^{\circ}\text{C}^{-2}$ $0 < T/\ ^{\circ}\text{C} < 850$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 16, 03.05.2013

2.2 Klassische Bandleiter Platin-Dünnschicht als resistiver Temperatursensor

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 17, 03.05.2013

2.2 Klassische Bandleiter Thermoelektrischer bzw. Seebeck-Effekt (1)

Im Jahr 1822 entdeckte T. J. Seebeck, dass sich zwischen den Enden eines Leiters, der einen Temperaturgradienten aufweist, eine elektrische Spannung proportional zur Temperaturdifferenz der beiden Enden aufbaut. Diese Spannung nannte er Thermospannung.

 U_{Th} : Thermospannung ΔT : Temperaturdifferenz $T_2 - T_1$ h: Länge des Leiters

Als Ursache der Thermospannung wird manchmal die Temperaturabhängigkeit der Kontaktspannung bzw. des Fermi-Niveaus angegeben. Tatsächlich ist der Effekt jedoch auf die Thermodiffusion von Ladungsträgern vom heißen zum kalten Ende des Leiters zurückzuführen (Ludwig-Soret-Effekt).

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 18, 03.05.2013

2.2 Klassische Bandleiter Thermoelektrischer bzw. Seebeck-Effekt (2)

$$J_{\text{Drift}} = -\sigma_{el} \cdot \nabla \Phi(x) \approx -\sigma_{el} \cdot \frac{U_{Th}}{h}$$
$$J_{\text{Diff}} = D_T \cdot \nabla T(x) \approx D_T \cdot \frac{\Delta T}{h}$$
Im Gleichgewichtsfall ist

 $J_{\text{Diff}} + J_{\text{Drift}} = 0$

 $\rightarrow U_{Th} = \frac{D_T}{\sigma_{el}} \cdot \Delta T = \eta \cdot \Delta T$ $D_T: \text{ Thermodiffusionskoeffizient}$ $\eta : \text{ Seebeck-Koeffizient}$

allgemein
$$U_{Th} = \int_{T_1}^{T_2} \eta \cdot dT$$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 19, 03.05.2013

2.2 Klassische Bandleiter Gegenüberstellung von Seebeck- und Peltier-Effekt

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 20, 03.05.2013

2.2 Klassische Bandleiter Anwendung: Temperaturmessung mittels Thermoelement

 T_M : Messtemperatur

 T_0 : Vergleichsstellentemperatur

Der isotherme Block liegt auf der Vergleichstemperatur T_0 . In diesem Block werden die Leitungen des Thermoelements auf die Leiter des Messgeräts überführt. Zur Berechnung der Messtemperatur muss die Vergleichstemperatur bekannt sein (z.B. Eiswasser, zusätzlicher Sensor, o.ä.).

Als Thermopaare werden Metalle bevorzugt, da sie im Gegensatz zu Halbleitern als flexible Drähte hergestellt werden können.

www.iwe.kit.edu

[IWE]

Kapitel 2, Folie: 21, 03.05.2013

2.2 Klassische Bandleiter Thermoelektrische Spannungsreihe

- Spannung in μ V / K
- Bezugswerkstoff: Platin (Pt)
- maximal zulässige Betriebstemperaturen der Thermoelemente

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 22, 03.05.2013

2.2 Klassische Bandleiter Auswahlkriterien und gebräuchliche Thermopaare

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 23, 03.05.2013

2.2 Klassische Bandleiter Piezoresistiver Effekt (1)

Piezoresistiver Effekt: Widerstandsänderung in Materialien durch Dehnung Einsatzgebiet: Dehnmessstreifen (DMS), Druckdose, etc.

Widerstand:
$$R = \rho \cdot \frac{l}{A} = \frac{1}{e_0 n \mu} \cdot \frac{l}{A}$$

Bei Längsdehnung um *I*, wird gleichzeitig der Querschnitt des Leiters gestaucht. Des weiteren werden durch die Deformation zusätzliche Fehlstellen im Material erzeugt, welche die Beweglichkeit der Ladungsträger herabsetzen. Zur Berechnung der Widerstandsänderung *R* wird das totale Differential herangezogen:

$$dR = \frac{\partial R}{\partial I} dI + \frac{\partial R}{\partial A} dA + \frac{\partial R}{\partial \rho} d\rho$$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 24, 03.05.2013

2.2 Klassische Bandleiter Piezoresistiver Effekt (2)

Für die Differentiale ergibt sich:

 $\frac{\partial R}{\partial I} = \rho \cdot \frac{1}{A}$ $\frac{\partial R}{\partial A} = -\rho \frac{I}{A^2}$ $\frac{\partial R}{\partial \rho} = \frac{I}{A}$

Einsetzen in das totale Differential ergibt:

$$dR = \rho \cdot \frac{1}{A} dl - \rho \cdot \frac{l}{A^2} dA + \frac{l}{A} d\rho$$
$$\rightarrow \frac{dR}{R} = \frac{dl}{l} - \frac{dA}{A} + \frac{d\rho}{\rho}$$

Mit der Querkontraktionszahl

$$v = -\frac{1}{2} \cdot \frac{dA/A}{dI/I}$$
 mit $0 \le v \le 0,5$

ergibt sich:

$$\frac{dR}{R} = \left(1 + 2\nu\right) \cdot \frac{dI}{I} + \frac{d\rho}{\rho}$$

Unter der Annahme, dass die Anzahl der freien Ladungsträger *n* bei Deformation gleich bleibt, gilt für die Widerstandsänderung:

$$\frac{\Delta R}{R} = (1 + 2\nu) \cdot \varepsilon_M - \frac{\Delta \mu}{\mu}$$

mit $\mathcal{E}_M = \Delta I / I$ für die mechanische Dehnung.

www.iwe.kit.edu

Kapitel 2, Folie: 25, 03.05.2013

2.2 Klassische Bandleiter Dehnmessstreifen (DMS)

Definition: *k*-Faktor

Als Kenngröße von Dehnmessstreifen wird der *k*-Faktor wie folgt spezifiziert:

Bei Metallen ist die Änderung der Beweglichkeit durch Deformation vernachlässigbar gegen die Geometrieänderung. Da ν nicht größer als 0,5 werden kann, gilt für die meisten Metalle:

 $k \approx 2$

Bei Halbleitern ist der Beweglichkeitsterm häufig dominant, die *k*-Faktoren können daher deutlich höher liegen.

 $k \approx 100...200$

www.iwe.kit.edu

Kapitel 2, Folie: 26, 03.05.2013

2.2 Klassische Bandleiter Bauteil: Metallfolien-Dehnmessstreifen (DMS)

www.iwe.kit.edu

Kapitel 2, Folie: 27, 03.05.2013

Modellberatungsabend

- Dienstag, 18. Juni 2013
 18:00 20:00 Uhr
 in der alten Mensa (großer Saal).
- Die Professoren und Modellberater stellen die Institute und Studienmodelle der Elektro- und Informationstechnik mit Exponaten, Informationsmaterial und im persönlichen Gespräch vor.
- Nutzen Sie die Gelegenheit, sich über den weiteren Verlauf Ihres Studiums zu informieren!

2.3 Halbleitende Metalloxide Überblick Funktionskeramik (Eigenschaften, Herstellungstechnologien)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 2, 24.05.2013

2.3 Halbleitende Metalloxide

Leitfähigkeit eines Materials

 $\sigma = \boldsymbol{e}_0 \cdot \sum_i \boldsymbol{z}_i \cdot \boldsymbol{n}_i \cdot \boldsymbol{\mu}_i$

- *e*₀ : Elementarladung
- z_i : Ladungszahl
- n_i : Konzentration $\}$ der Ladungsträgerart i
- μ_i : Beweglichkeit

Die Leitfähigkeit wird wesentlich von der Konzentration der Spezies *n_i* bestimmt.

Defektchemie

Ziel ist die Berechnung der Konzentration der freien Ladungsträger (Punktdefekte), die zur elektrischen Leitung beitragen.

- Elektronen, Löcher
- Metallleerstellen
- Sauerstoffleerstellen

Die Konzentration der Defekte zeigt sich insbesondere abhängig von

- Temperatur
- Sauerstoffpartialdruck
- Dotierungen/ Verunreinigungen

 $\sigma = f(pO_2, T, Dotierung)$

www.iwe.kit.edu

Kapitel 2, Folie: 3, 24.05.2013

2.3 Halbleitende Metalloxide Beispiele: Materialsysteme und Einsatzgebiete

ZnO	Zinkoxid	Varistor
(SiC)	Siliziumcarbid	Hochtemperaturhalbleiter, Varistor
(GaN)	Galliumnitrid	Hochtemperaturhalbleiter
TiO ₂	Titanoxid	klassischer Sauerstoffsensor
SnO ₂	Zinnoxid	Taguchi-Sensor, elektronische Nase
RuO ₂	Rutheniumoxid	Dickschichtelektrode/ -kontakt
YBa ₂ Cu ₃ O ₇	Yttrium-Barium-Kupferoxid	Dickschichtelektrode/ -kontakt
In ₂ O ₃ -SnO ₂	Indiumoxid-Zinnoxid	transparente Leiter (Displays)
BaTiO ₃	Bariumtitanat	Kaltleiter (PTCs)
Sr(Fe,Ti)O ₃	Strontium-Eisentitanat	resistiver Sauerstoffsensor
(La,Sr)MnO ₃	Lanthan-Strontiummanganat	Elektrode für HT-Brennstoffzellen

www.iwe.kit.edu

Kapitel 2, Folie: 4, 24.05.2013

2.3 Halbleitende Metalloxide Beschreibung der Eigenschaften mittels Defektchemie

VVV SWerkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

Institut für

www.iwe.kit.edu

Kapitel 2, Folie: 5, 24.05.2013

2.3 Halbleitende Metalloxide Ladungsneutralität bei Festkörpern

Bei jedem defektchemischen Vorgang bleibt der Festkörper insgesamt elektrisch neutral, d.h. es werden genauso viele positive wie negative Ladungen generiert (Ladungserhaltungssatz).

Ladungsneutralität

Die Summe der Konzentrationen positiver Spezies P_p ist gleich der Summe negativer Spezies N_n .

 $\sum_{p} z_{p} \left[\mathsf{P}_{p} \right] \equiv \sum_{n} z_{n} \left[\mathsf{N}_{n} \right]$

z: Ladungszahl der Spezies

Beispiel

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 6, 24.05.2013

2.3 Halbleitende Metalloxide Anwendung des Massenwirkungsgesetzes

Gegeben: Defektchemische Reaktion

 $\alpha A + \beta B \rightleftharpoons \gamma C + \delta D$

A, B, C, D beteiligte Reaktanden α , β , γ , δ stöchiometrische Koeffizienten

Die Reaktion ist im Gleichgewicht, wenn die Hin- und Rückreaktion mit der gleichen Rate abläuft. Im Gleichgewicht gilt das Massenwirkungsgesetz (MWG).

1. Schritt

Alle Reaktionspartner auf eine Seite bringen

Null $\rightleftharpoons \gamma C + \delta D - (\alpha A + \beta B)$

2. Schritt

Umschreiben der Reaktionsgleichung in Konzentrationen und Anwendung des MWG.

Arithmetik: Addition \rightarrow Multiplikation Subtraktion \rightarrow Division Koeffizient \rightarrow Potenz

$$\frac{\left[\mathsf{C}\right]^{\gamma} \cdot \left[\mathsf{D}\right]^{\delta}}{\left[\mathsf{A}\right]^{\alpha} \cdot \left[\mathsf{B}\right]^{\beta}} = \mathcal{K}_{C}\left(\mathcal{T}\right) = \mathcal{K}_{0} \cdot \exp\left(-\frac{\Delta G_{0}}{k\mathcal{T}}\right)$$

[A], [B], [C], [D] : Konzentrationen ΔG_0 : freie Reaktionsenthalpie K_0 : Konstante T : Temperatur

www.iwe.kit.edu

Kapitel 2, Folie: 7, 24.05.2013

2.3 Halbleitende Metalloxide Beispiel: Intrinsische Konzentration von Elektronen und Löchern

a) Reaktionsgleichung

Generation eines Elektron-Loch-Paares

 $Null \rightleftharpoons e' + h^{\bullet} e'$: Elektron

e' : Elektron h^{\bullet} : Loch

b) Massenwirkungsgesetz

$$\left[e^{/}\right]\cdot\left[h^{\bullet}\right] = K_{C}(T) = K_{0} \cdot \exp\left(-\frac{\Delta G_{0}}{kT}\right)$$

c) Ladungsneutralität

 $\left[e'\right] = \left[h^{\bullet}\right]$

⇒ Intrinsische Konzentration

$$\left[\mathbf{e}^{\prime}\right] = \left[\mathbf{h}^{\bullet}\right] = \sqrt{K_0} \cdot \exp\left(-\frac{\Delta G_0}{2 \cdot kT}\right)$$

Analogie zu klassischen Halbleitern

$$n = p = N_{eff} \cdot \exp\left(-\frac{W_G}{2 \cdot kT}\right) \longrightarrow \begin{bmatrix} e' \end{bmatrix} = n$$
$$\begin{bmatrix} h^{\bullet} \end{bmatrix} = p$$
$$\sqrt{K_0} = N_{eff}$$
$$\Delta G_0 = W_G$$

www.iwe.kit.edu

Kapitel 2, Folie: 8, 24.05.2013

2.3 Halbleitende Metalloxide Beispiel: Elektronenkonzentration bei Donatordotierung

a) Reaktionsgleichung

Ionisierung eines Lanthan-Donators (La) auf dem A-Platz in Strontiumtitanat (SrTiO₃)

$$La_{Sr}^{x} \rightleftharpoons La_{Sr}^{i} + e' \longrightarrow Null \rightleftharpoons La_{Sr}^{i} + e' - La_{Sr}^{x}$$

b) Massenwirkungsgesetz

$$\frac{\left[\mathsf{La}_{\mathsf{Sr}}^{\bullet}\right]\cdot\left[\mathsf{e}^{\prime}\right]}{\left[\mathsf{La}_{\mathsf{Sr}}^{\mathsf{X}}\right]} = \mathcal{K}_{0}\cdot\exp\left(-\frac{\Delta G_{0}}{kT}\right)$$

c) Ladungsneutralität

$$\left[La_{Sr}^{\bullet}\right] = \left[e'\right]$$

In Störstellenreserve sind nur wenige Donatoren ionisiert:

$$N_D = \left[La_{Sr}^x \right] + \left[La_{Sr}^{\bullet} \right] \approx \left[La_{Sr}^x \right]$$

Konzentrationen der Elektronen

$$\left[e^{\prime}\right] = \left[La_{Sr}^{\bullet}\right] = \sqrt{K_0 N_D} \cdot \exp\left(-\frac{\Delta G_0}{2 \cdot kT}\right)$$

Analogie zu klassischen Halbleitern

$$n = N_D^{+} = \sqrt{N_L N_D} \cdot \exp\left(-\frac{\Delta W_D}{2 \cdot kT}\right)$$

www.iwe.kit.edu

Kapitel 2, Folie: 9, 24.05.2013

2.3 Halbleitende Metalloxide Sauerstoffaustausch bei Metalloxiden

Sauerstoffein- und -ausbau

 p_{O2} : Sauerstoffpartialdruck (Anteil des Sauerstoffs am Gesamtdruck der Atmosphäre) z.B. in Luft bei 20 °C gilt $p_{O2} \approx 0,21$ atm Je nach Sauerstoffpartialdruck (Konzentration) in der umgebenden Gasatmosphäre werden Sauerstoffatome in das Gitter ein- oder aus dem Gitter ausgebaut, bis das Gleichgewicht erreicht ist (MWG).

Je nach Situation entstehen entweder Sauerstoff- oder Metallleerstellen.

Welchen Einfluss dieser Austausch auf die elektronischen Eigenschaften des Festkörpers ausübt und inwiefern sich der Effekt in einer Anwendung nutzen lässt, wird im Folgenden untersucht.

Sauerstoffsensor?

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 10, 24.05.2013

2.3 Halbleitende Metalloxide Sauerstoffaustausch am Beispiel von Titanoxid (TiO₂)

www.iwe.kit.edu

Kapitel 2, Folie: 11, 24.05.2013

2.3 Halbleitende Metalloxide Defektchemische Beschreibung des Sauerstoffausbaus

Sauerstoffausbau

(1)
$$O_0^X \rightleftharpoons V_0^X + \frac{1}{2}O_2(g)^{\uparrow}$$

Ionisierung der Störstellen (Donatoren)

(2)
$$V_{\rm O} \rightleftharpoons V_{\rm O}^{\bullet \bullet} + 2e^{t}$$

Gesamtreaktion (Summe)

$$O_{O}^{X} \rightleftharpoons V_{O}^{\bullet \bullet} + 2e' + \frac{1}{2}O_{2}(g)^{\uparrow}$$

Massenwirkungsgesetz $k(T) = \frac{\sqrt{p_{O_2}} \cdot [V_0^{\bullet \bullet}] \cdot [e^{/}]^2}{[O_0^X]}$ Elektroneutralität

$$n = [e^{\prime}] = 2 \cdot [V_{O}^{\bullet \bullet}]$$

Elektronenkonzentration (n-Leitung) $n = \left(2 \cdot [O_0^X] \cdot k(T)\right)^{1/3} \cdot p_{O_2}^{-1/6}$

Elektrische Leitfähigkeit

$$\sigma_{el} \sim {p_{O_2}}^{-1/6}$$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 12, 24.05.2013
2.3 Halbleitende Metalloxide Defektchemische Beschreibung des Sauerstoffeinbaus

Sauerstoffeinbau (1) $O_2(g) + Ti_{Ti}^X \Longrightarrow V_{Ti}^X + (Ti_{Ti}^X + 2O_0^X)_{neu}$

Ionisierung der Störstellen (Akzeptoren)

(2) $V_{Ti}^{X} \rightleftharpoons V_{Ti}^{////} + 4h^{\bullet}$

Gesamtreaktion (Summe)

$$O_2(g) \downarrow \Longrightarrow V_{Ti}^{////} + 4h^{\bullet} + 2O_0^X$$

Massenwirkungsgesetz

$$k(T) = \frac{[V_{\text{Ti}}^{////}] \cdot [h^{\bullet}]^{4} \cdot [O_{\text{O}}^{X}]^{2}}{p_{O_{2}}}$$

Elektroneutralität $p = [h^{\bullet}] = 4 \cdot [V_{Ti}^{////}]$

Löcherkonzentration (p-Leitung) $p = \left(\frac{4 \cdot k(T)}{I\Omega_2^{X} I^2}\right)^{+1/5} \cdot p_{O_2}^{+1/5}$

Elektrische Leitfähigkeit

$$\sigma_{el} \sim {p_{O_2}}^{+1/5}$$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 13, 24.05.2013

2.3 Halbleitende Metalloxide Leitfähigkeit über Sauerstoffpartialdruck und Bandschema von TiO₂

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 14, 24.05.2013

2.3 Halbleitende Metalloxide Reale Widerstandskennlinien von TiO₂ und Temperaturabhängigkeit

Kennlinien stark temperaturabhängig. Effekt prinzipiell als Sauerstoffsensor nutzbar, jedoch nicht TiO₂.

Alternatives Material

Strontium-Eisentitanat $Sr(Ti,Fe)O_3$

www.iwe.kit.edu

Kapitel 2, Folie: 15, 24.05.2013

2.3 Halbleitende Metalloxide Sauerstoffausbau in Perowskit Strontiumtitanat (SrTiO₃)

www.iwe.kit.edu

Kapitel 2, Folie: 16, 24.05.2013

2.3 Halbleitende Metalloxide Defektkonzentrationen bei akzeptordotiertem Strontiumtitanat

 $[Fe_{Ti}] \approx p + 2 \cdot [V_O^{\bullet \bullet}]$

$$\left(\frac{\frac{1}{2}\Delta G}{T}\right) \cdot p_{O_2}^{+1/4}$$

Institut für erkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 17, 24.05.2013

2.3 Halbleitende Metalloxide Weiterführende Veranstaltungen

Systematische Produktentwicklung in der Sensorik

Wintersemester 2 SWS (Master)

Dr.-Ing. J. Riegel (Fa. Bosch) Prof. Dr.-Ing. E. Ivers-Tiffée Dr.-Ing. W. Menesklou

Inhalt

- Lambda-Sonde
- alternative
 Abgassensoren
- Produktentwicklung
- Design of Experiments
- Qualitätsmanagement
- praktischer Versuch

Sensoren

Wintersemester 2 SWS (Master)

Dr.-Ing. W. Menesklou

Inhalt

- Temperatursensoren
- Mech. Sensoren
- Chemische Sensoren
- Bio Sensoren
- Gassensoren
- Optische Sensoren
- Magnet. Sensoren ...

www.iwe.kit.edu

Kapitel 2, Folie: 18, 24.05.2013

2.3 Halbleitende Metalloxide Weiteres Anwendungsgebiet: Nichtlineare Widerstände

Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.

www.iwe.kit.edu

Kapitel 2, Folie: 19, 24.05.2013

Тур	Physikalischer Effekt	Werkstoff
Spannungsabhängiger Widerstand (Varistor)	Korngrenzphänomene in halbleitenden Metalloxiden	n-dotiertes ZnO
Kaltleiter (PTC)	Korngrenzphänomene in halbleitenden Ferroelektrika und Eigenerwärmung	n-dotiertes BaTiO ₃ $\sigma \approx 10^210^3$ S/m
Heißleiter (NTC)	Hoppingleitung in Metalloxiden und Eigenerwärmung	Spinelle, z.B. (Ni,Mn) ₃ O ₄ $\sigma \approx 10^{-2}$ S/m

Begriffe

Thermistor:thermally sensitive resistorNTC:negative temperature coefficientPTC:positive temperature coefficientVaristor:variable resistor

[Schaumburg 1990]

2.3 Halbleitende Metalloxide Temperaturabhängige nichtlineare Widerstände: NTC und PTC

www.iwe.kit.edu

Kapitel 2, Folie: 21, 24.05.2013

2.3 Halbleitende Metalloxide Weiteres Anwendungsgebiet: Nichtlineare Widerstände

Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.

www.iwe.kit.edu

Kapitel 2, Folie: 22, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Bauelement: Keramischer Heißleiter (NTC)

[www.shibako.co.kr]

Funktion basierend auf elektronischer Hoppingleitung

www.iwe.kit.edu

Kapitel 2, Folie: 23, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Temperaturabhängigkeit verschiedener Eisenoxide (NTC)

Allgemeine Beschreibung des elektrischen Widerstands eines NTC

$$R(T) = \frac{l}{en\mu(T) \cdot d^2} \approx A \cdot e^{\frac{B}{T}}$$

- A,B Materialkonstanten
 - Länge
- d² Querschnitt
- *R* elektrischer Widerstand
- T Temperatur in K

[Weißmantel 1995 & Fasching 1994]

www.iwe.kit.edu

Kapitel 2, Folie: 24, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Normbezogene Widerstandskennlinie des NTCs

Formel bezogen auf Nennwiderstand R_N

$$R(T) = R_N \cdot \exp\left[B \cdot \left(\frac{1}{T} - \frac{1}{T_N}\right)\right]$$

Temperaturkoeffizient:

$$\alpha = \frac{1}{R} \cdot \frac{dR}{dT} = -\frac{B}{T^2}$$

- **B** Materialkonstante
- R elektrischer Widerstand
- R_N Widerstand bei $T = T_N$
- T Temperatur in K
- T_N Bezugstemperatur
- α Temperaturkoeffizient

[Weißmantel 1995 & Fasching 1994]

www.iwe.kit.edu

Kapitel 2, Folie: 25, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Modellierung der U/I-Kennlinie eines NTCs mit Eigenerwärmung

Durch Konvektion abgeführte Leistung

Im thermischen Gleichgewicht ist $P_{el} = P_K$

 $P_{K} = \alpha_{K} \cdot A_{0} \cdot (T - T_{U}) = G_{th} \cdot (T - T_{U})$

$$U \cdot I = \frac{U^2}{R(T)} = I^2 \cdot R(T) = G_{th} \cdot (T - T_U)$$

gültig für T < 350 °C da Strahlungswärme unberücksichtigt

- *T* : Temperatur des NTC
- *T_U* : Umgebungstemperatur
- *G_{th}* : Wärmeleitwert
- α_{K} : Wärmeübergangszahl
- A₀: Oberfläche des NTC

www.iwe.kit.edu

Kapitel 2, Folie: 26, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Nichtlineare U/I-Kennlinie des NTCs aufgrund Eigenerwärmung

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 27, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Heißleiter als Chip Thermistor

[BetaTherm]

Chip Thermistor Features schnelle Antwortzeit (< 1 s in Flüssigkeiten)

- 1%, 2%, 5%, 10% Genauigkeit
- 1 mW/K Verlustleistung (in Luft bei 25 °C)
- Nennwiderstand $R_{25^{\circ}C}$ =100, 1000 ... 1 M Ω
- Temperaturkoeffizienten $\alpha_{25^{\circ}C}$ = 3,68 ; B_{0/50^{\circ}C}=3263
- Metallisierung: Ag, Au

www.iwe.kit.edu

Kapitel 2, Folie: 28, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Einschaltverzögerungsschaltung (sog. Anlassheißleiter)

[Schaumburg 1994]

www.iwe.kit.edu

Kapitel 2, Folie: 29, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung NTC zur Spannungsstabilisierung

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 30, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Das Prinzip der elektronischen Hoppingleitung

Hoppingleitung

Reicht die thermische Energie der Ladungsträger nicht aus, um diese ins Leitungsband zu heben, so zeigt sich bei bestimmten Materialen trotzdem eine gewisse elektrische Leitfähigkeit – entgegen der Vorhersage des Bändermodells. Bei diesem Leitungsprozess, genannt Hoppingleitung, springen die Ladungsträger je nach räumlichem und energetischem Abstand der Haftstellen thermisch angeregt von einer Haftstelle zur anderen (Hopping).

[Heywang 1984]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 31, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Oxidationszahlen bzw. Wertigkeiten der Elemente

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 1,008 H <u>1</u> (-1)																	2 4,003 He
2	3 6,941 Li 1	4 9,012 Be 2											5 10,81 B <u>3</u>	6 12,01 C <u>-4,4</u> (2)	7 14,01 N <u>-3</u> (2,3,4,5)	8 16,00 O <u>-2</u> (-1)	9 19,00 F <u>-1</u>	10 20,18 Ne
3	11 22,99 Na <u>1</u>	12 24,31 Mg <u>2</u>											13 26,98 Al <u>3</u> 3	14 28,09 Si <u>4</u> (-4)	15 30,97 P <u>5</u> (-3,3)	16 32,06 S (-2,2,4)	17 35,45 CI <u>-1</u> (1,3,5,7)	18 39,95 Ar
4	19 39,10 K <u>1</u>	20 40,08 Ca 2	21 44,96 SC <u>3</u>	22 47,87 Ti <u>4</u> 3	23 50,94 V <u>5</u> (0,2,3,4)	24 52,00 Cr <u>3</u> (0,2,6)	25 54,94 Mn <u>2</u> (-1,0,3,4,6,7)	26 55,85 Fe <u>3</u> (-2,0,2,6)	27 58,93 CO <u>2</u> (-1,0,3)	28 58,69 Ni <u>2</u> (0,3)	29 63,55 Cu (1)	30 65,41 Zn <u>2</u>	31 69,72 Ga <u>3</u>	32 72,64 Ge <u>4</u>	33 74,92 AS <u>3</u> (-3,5)	34 78,96 Se (-2,6)	35 79,90 Br <u>-1</u> (1,3,5,7)	36 83,80 Kr (2)
5	37 85,47 Rb <u>1</u>	38 87,62 Sr <u>2</u>	39 88,91 Y <u>3</u>	40 91,22 Zr <u>4</u>	41 92,91 Nb <u>5</u> (3)	42 95,94 Mo ('0,2,3,4,5)	⁴³ (98) TC <u>7</u>	44 101,1 Ru <u>3,4</u> (-2,0,2,6,8)	45 102,9 Rh <u>1,3</u> (0,2,4,5)	46 106,4 Pd <u>2</u> (0,4)	47 107,9 Ag <u>1</u> (2)	⁴⁸ 112,4 Cd <u>2</u>	49 114,8 In <u>3</u>	⁵⁰ 118,7 Sn <u>2,4</u>	51 121,8 Sb <u>3</u> (-3,5)	52 127,6 Te (-2,6)	53 126,9 -1 (1,5,7)	54 131,3 Xe (2,4,6)
6	55 132,9 CS 1	⁵⁶ 137,3 Ba <u>2</u>	57 - 71 La-Lu	72 178,5 Hf <u>4</u>	⁷³ 180,9 Ta <u>5</u>	74 183,8 W <u>6</u> (0,2,3,4,5)	75 186,2 Re (-1,2,4,6)	76 190,2 OS <u>4</u> (-2,0,2,3,6,8)	77 192,2 I <u>1,4</u> (-1,0,2,3,6)	78 195,1 Pt <u>2,4</u> (0)	79 197,0 Au <u>3</u> (1)	80 200,6 Hg (1)	81 204,4 TI (3)	82 207,2 Pb 2 (4)	83 209,0 Bi <u>3</u> (5)	84 (209) PO <u>4</u> (2,6)	85 (210) At <u>-1</u> (1,3,5,7)	86 (222) Rn (2)
7	87 (223) Fr 1	⁸⁸ (226) Ra <u>2</u>	^{89 -} 103 Ac-Lr															

	57 138,9	58 140,1	59 140,9	60 (145)	61 (145)	62 150,4	63 152,0	64 157,3	65 158,9	66 162,5	67 164,9	68 167,3	69 168,9	70 173,0	71 175,0
Lanthanoide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>											
		(4)	(4)			(2)	(2)		(4)				(2)	(2)	
	89 (227)	90 232,0	91 231,0	92 238,0	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
Actinoide	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>5</u>	<u>4</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>2</u>	<u>3</u>
			(4)	(3,4,5)	(3,4,6)	(3,5,6)	(4,5,6)	(4)	(4)	(4)				(3)	

www.iwe.kit.edu

Kapitel 2, Folie: 32, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Valenzaustausch bei Elemente mit mehreren Wertigkeiten

- Werkstoffe: Oxide der Metalle z.B. Mn, Fe, Co, Ni, Cu, Zn (Übergangsmetalle)
- Bindungstyp: überwiegend oder teilweise heteropolare (Ionen-) Bindung (Metalle: Kationen, Sauerstoff: Anion)

Halbleitende Eigenschaften entstehen durch Wertigkeitswechsel der Kationen im Oxid. Ladungstransport über Hopping-Mechanismus ("Durchreichen" der Wertigkeiten)

www.iwe.kit.edu

Kapitel 2, Folie: 33, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung

Das Prinzip der elektronischen Hoppingleitung: Platzwechselvorgänge von Elektronen

Hopping von Elektronen am Beispiel Fe₃O₄

Beim Hopping muss die Energie E_A überwunden werden. Nehmen die Elektronen thermische Energie aus der Umgebung auf, so steigt die Wahrscheinlichkeit für den Platzwechsel.

www.iwe.kit.edu

Kapitel 2, Folie: 34, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Schwach ausgeprägte Orbital-Überlappung (schmale Bänder)

Lokalisierte Zustände

Phänomen der elektrischen Leitfähigkeit, bei der die Ladungsträger einer Probe nur in die lokalisierten Bandzustände angeregt werden.

Die Beweglichkeit der Elektronen ist reduziert, sie können nur noch von einem lokalisierten Zustand in einen benachbarten springen. Die Elektronen nehmen thermische Energie auf und tunneln zu benachbarten lokalisierten Zuständen.

Dieser Übergang setzt sich aus zwei Phasen zusammen: Während der ersten Phase muss das Elektron mindestens so viel Energie aufnehmen, um den Energieunterschied zwischen den beiden Zuständen überwinden zu können. In der zweiten Phase tunnelt es in den benachbarten Zustand. Die Wahrscheinlichkeit dafür wird durch den Überlapp der Wellenfunktionen der beiden Zustände bestimmt.

www.iwe.kit.edu

Kapitel 2, Folie: 35, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Beweglichkeit bei Hoppingleitung: Polaronen

Bei schwach ausgeprägter Orbital-Überlappung (schmale Bänder) treten die Elektronen in Wechselwirkung mit den Gitterschwingungen. Die Elektronen polarisieren ihre Umgebung und verzerren sie dabei. Den Zustand "Elektron + Verzerrungsfeld" nennt man Polaron. Dieser Zustand muss beim Transport aufgebrochen werden.

[Maier 2000]

www.iwe.kit.edu

Kapitel 2, Folie: 36, 24.05.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Beweglichkeit der Ladungsträger bei Hopping

Diffusionskonstante für Polaronen

$$D = (1 - c)a^2 v_0 \cdot \exp\left(-\frac{E_A}{kT}\right)$$

- *E_A*: Aktivierungsenergie
- 1-*c*: Anteil der unbesetzten Plätze
- a: Sprungabstand
- v_0 : Schwingfrequenz (Debye-Frequenz)

Einstein-Beziehung:
$$\mu = \frac{q \cdot D}{k \cdot T}$$

Beweglichkeit

$$\mu = \frac{q(1-c)a^2v_0}{kT}\exp\left(-\frac{E_A}{kT}\right)$$

- q: Ladung
- *T*: Temperatur (in Kelvin)

Ist die Konzentration *n* der ungesättigten Valenzen (= Punktdefekte) konstant, was bei vielen Hoppingleitern der Fall ist, so gilt:

$$\sigma(T) = ze_0 n \cdot \mu(T) \sim \frac{1}{T} \exp\left(-\frac{E_A}{kT}\right)$$

[Heywang 1984]

www.iwe.kit.edu

Kapitel 2, Folie: 37, 24.05.2013

Vorlesung 7

www.iwe.kit.edu

Kapitel 2, Folie: 1, 10.06.2013

2.3 Halbleitende Metalloxide Weiteres Anwendungsgebiet: Nichtlineare Widerstände

Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.

www.iwe.kit.edu

Kapitel 2, Folie: 2, 10.06.2013

Тур	Physikalischer Effekt	Werkstoff
Spannungsabhängiger Widerstand (Varistor)	Korngrenzphänomene in halbleitenden Metalloxiden	n-dotiertes ZnO
Kaltleiter (PTC)	Korngrenzphänomene in halbleitenden Ferroelektrika und Eigenerwärmung	n-dotiertes BaTiO ₃ $\sigma \approx 10^210^3$ S/m
Heißleiter (NTC)	Hoppingleitung in Metalloxiden und Eigenerwärmung	Spinelle, z.B. $(Ni,Mn)_3O_4$ $\sigma \approx 10^{-2}$ S/m

Begriffe

Thermistor:thermally sensitive resistorNTC:negative temperature coefficientPTC:positive temperature coefficientVaristor:variable resistor

[Schaumburg 1990]

2.3 Halbleitende Metalloxide Temperaturabhängige nichtlineare Widerstände: NTC und PTC

www.iwe.kit.edu

Kapitel 2, Folie: 4, 10.06.2013

2.3 Halbleitende Metalloxide Weiteres Anwendungsgebiet: Nichtlineare Widerstände

Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.

www.iwe.kit.edu

Kapitel 2, Folie: 5, 10.06.2013

Physikalische Grundlagen des Heißleitereffekts

www.iwe.kit.edu

Kapitel 2, Folie: 6, 10.06.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Das Prinzip der elektronischen Hoppingleitung

Hoppingleitung

Reicht die thermische Energie der Ladungsträger nicht aus, um diese ins Leitungsband zu heben, so zeigt sich bei bestimmten Materialen trotzdem eine gewisse elektrische Leitfähigkeit – entgegen der Vorhersage des Bändermodells. Bei diesem Leitungsprozess, genannt Hoppingleitung, springen die Ladungsträger je nach räumlichem und energetischem Abstand der Haftstellen thermisch angeregt von einer Haftstelle zur anderen (Hopping).

[Heywang 1984]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 7, 10.06.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Das Prinzip der elektronischen Hoppingleitung:

Platzwechselvorgänge von Elektronen

Hopping von Elektronen am Beispiel Fe₃O₄

Beim Hopping muss die Energie E_A überwunden werden. Nehmen die Elektronen thermische Energie aus der Umgebung auf, so steigt die Wahrscheinlichkeit für den Platzwechsel.

www.iwe.kit.edu

Kapitel 2, Folie: 8, 10.06.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Oxidationszahlen bzw. Wertigkeiten der Elemente

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 1,008 H <u>1</u>																	2 4,003 He
2	(-1) 3 6,941 Li <u>1</u>	4 9,012 Be <u>2</u>											5 10,81 B <u>3</u>	6 12,01 C <u>-4,4</u>	7 14,01 N <u>-3</u>	8 16,00 O <u>-2</u>	9 19,00 F <u>-1</u>	10 20,18 Ne
3	11 22,99 Na <u>1</u>	12 24,31 Mg <u>2</u>											13 26,98 Al <u>3</u>	(2) 14 28,09 Si 4 (1)	(2,3,4,5) 15 30,97 P <u>5</u> (2,0)	(-1) 16 32,06 S <u>6</u> (0.0 1)	17 35,45 CI - <u>1</u> (1 0,5 7)	18 39,95 Ar
4	19 39,10 K 1	20 40,08 Ca 2	21 44,96 SC <u>3</u>	22 47,87 Ti <u>4</u> 3	23 50,94 V 5 (0 2 3 4)	24 52,00 Cr <u>3</u> (0 2 6)	25 54,94 Mn <u>2</u> (-1 0 3 4 6 7)	26 55,85 Fe <u>3</u> (-2 0 2 6)	27 58,93 CO <u>2</u> (-1 0 3)	28 58,69 Ni <u>2</u> (0 3)	29 63,55 Cu 2(1)	30 65,41 Zn <u>2</u>	3 31 69,72 Ga <u>3</u>	(-4) 32 72,64 Ge <u>4</u>	(-3,3) 33 74,92 AS <u>3</u> (-3 5)	(-2,2,4) 34 78,96 Se 4 (-2,6)	(1,3,5,7) 35 79,90 Br - <u>1</u> (1 3 5 7)	36 83,80 Kr
5	37 85,47 Rb <u>1</u>	38 87,62 Sr <u>2</u>	39 88,91 Y <u>3</u>	40 91,22 Zr <u>4</u>	(0,2,0,4) 41 92,91 Nb <u>5</u> (3)	(0,2,3) 42 95,94 MO <u>6</u> ('0,2,3,4,5)	(1,0,0,4,0,7) 43 (98) TC <u>7</u>	44 101,1 Ru <u>3,4</u> (-2,0,2,6,8)	(1,0,0) 45 102,9 Rh <u>1,3</u> (0,2,4,5)	(0,0) 46 106,4 Pd 2 (0,4)	47 107,9 Ag <u>1</u> (2)	48 112,4 Cd 2	49 114,8 In <u>3</u>	50 118,7 Sn <u>2,4</u>	51 121,8 Sb <u>3</u> (-3,5)	52 127,6 Te <u>4</u> (-2,6)	(1,5,3,7) 53 126,9 1 (1,5,7)	54 131,3 Xe (2,4,6)
6	55 132,9 CS <u>1</u>	⁵⁶ 137,3 Ba <u>2</u>	57 - 71 La-Lu	72 178,5 Hf <u>4</u>	73 180,9 Ta <u>5</u>	74 183,8 W <u>6</u> (0,2,3,4,5)	75 186,2 Re <u>7</u> (-1,2,4,6)	76 190,2 OS <u>4</u> (-2,0,2,3,6,8)	77 192,2 I r <u>1.4</u> (-1,0,2,3,6)	78 195,1 Pt <u>2,4</u> (0)	79 197,0 Au <u>3</u> (1)	80 200,6 Hg (1)	81 204,4 TI <u>1</u> (3)	82 207,2 Pb 2 (4)	83 209,0 Bi <u>3</u> (5)	84 (209) PO <u>4</u> (2,6)	85 (210) At <u>-1</u> (1,3,5,7)	86 (222) Rn (2)
7	87 (223) Fr 1	88 (226) Ra <u>2</u>	^{89 - 103} Ac-Lr															

	57 138,9	58 140,1	59 140,9	60 (145)	61 (145)	62 150,4	63 152,0	64 157,3	65 158,9	66 162,5	67 164,9	68 167,3	69 168,9	70 173,0	71 175,0
Lanthanoide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>											
		(4)	(4)			(2)	(2)		(4)				(2)	(2)	
	89 (227)	90 232,0	91 231,0	92 238,0	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
Actinoide	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>5</u>	<u>4</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>2</u>	<u>3</u>
			(4)	(3,4,5)	(3,4,6)	(3,5,6)	(4,5,6)	(4)	(4)	(4)				(3)	

www.iwe.kit.edu

Kapitel 2, Folie: 9, 10.06.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Valenzaustausch bei Elemente mit mehreren Wertigkeiten

- Werkstoffe: Oxide der Metalle z.B. Mn, Fe, Co, Ni, Cu, Zn (Übergangsmetalle)
- Bindungstyp: überwiegend oder teilweise heteropolare (Ionen-) Bindung (Metalle: Kationen, Sauerstoff: Anion)

Halbleitende Eigenschaften entstehen durch Wertigkeitswechsel der Kationen im Oxid. Ladungstransport über Hopping-Mechanismus ("Durchreichen" der Wertigkeiten)

www.iwe.kit.edu

Kapitel 2, Folie: 10, 10.06.2013

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Beweglichkeit der Ladungsträger bei Hopping

Diffusionskonstante für Polaronen

$$D = (1 - c)a^2 v_0 \cdot \exp\left(-\frac{E_A}{kT}\right)$$

- *E_A*: Aktivierungsenergie
- 1-*c*: Anteil der unbesetzten Plätze
- a: Sprungabstand
- v_0 : Schwingfrequenz (Debye-Frequenz)

Einstein-Beziehung:
$$\mu = \frac{q \cdot D}{k \cdot T}$$

Beweglichkeit

$$\mu = \frac{q(1-c)a^2v_0}{kT}\exp\left(-\frac{E_A}{kT}\right)$$

q: Ladung

T: Temperatur (in Kelvin)

Ist die Konzentration *n* der ungesättigten Valenzen (= Punktdefekte) konstant, was bei vielen Hoppingleitern der Fall ist, so gilt:

$$\sigma(T) = ze_0 n \cdot \mu(T) \sim \frac{1}{T} \exp\left(-\frac{E_A}{kT}\right)$$

[Heywang 1984]

www.iwe.kit.edu

Kapitel 2, Folie: 11, 10.06.2013
2.3 Halbleitende Metalloxide Überblick nichtlineare Widerstände (1)

Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.

www.iwe.kit.edu

Kapitel 2, Folie: 12, 10.06.2013

Einsatzgebiete von Varistoren

www.iwe.kit.edu

Kapitel 2, Folie: 13, 10.06.2013

2.3 Halbleitende Metalloxide Bauelement: Keramische Varistoren

Schaltsymbol Varistor

[www.staratech.com]

www.iwe.kit.edu

Kapitel 2, Folie: 14, 10.06.2013

2.3 Halbleitende Metalloxide Anwendung von Varistoren als Überspannungsschutz

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 15, 10.06.2013

2.3 Halbleitende Metalloxide Bauformen von Varistoren

Bauformen von ZnO-Varistoren

Varistoren als Hochspannungsableiter

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 16, 10.06.2013

2.3 Halbleitende Metalloxide Nichtlineare Strom-Spannungs-Kennlinie eines Varistors

Varistor: Variable Resistor

Spannungsabhängiger Widerstand mit symmetrischer *I(U)*-Kennlinie

 $I = \pm I_0 \cdot \left| \frac{U}{U_0} \right|^{a}$

- α : Nichtlinearitätskoeffizient
- I_0 : Nennansprechstrom
- U₀: Nennansprechspannung

Nennwerte sind geometrieabhängig typische α -Werte: 5...70 Werkstoffe: SiC, ZnO

www.iwe.kit.edu

Kapitel 2, Folie: 17, 10.06.2013

Physikalische Grundlagen des Varistoreffekts

www.iwe.kit.edu

Kapitel 2, Folie: 18, 10.06.2013

2.3 Halbleitende Metalloxide Varistor: polykristallines ZnO-Gefüge mit Sekundärphasen

Polykristalline Keramik: Netzwerk aus parallel und seriell geschalteten "Mikrovaristoren" Varistor-Ansprechspannung: abhängig von der Korngröße und der Geometrie des Bauelements

www.iwe.kit.edu

Kapitel 2, Folie: 19, 10.06.2013

2.3 Halbleitende Metalloxide Ersatzschaltbild für Varistoren

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 20, 10.06.2013

2.3 Halbleitende Metalloxide Fehlstellen und Bänderschema in ZnO-Varistoren

Bänderschema mit den Energieniveaus der Schottky-Defekte (W_A , W_D)

$$V_{O}^{\bullet, V_{O}^{\bullet:}}$$
:ein- bzw. zweifach geladene O-Leerstelle (W_{D1}, W_{D2}) D: Donatoren $V_{Zn}^{\bullet, V_{O}^{\bullet:}}$:ein- bzw. zweifach geladene Zn-Leerstelle (W_{A1}, W_{A2}) A: Akzeptorene', (n):Elektronen (-konzentration)Elektronen (-konzentration)[Heywang 1984]

www.iwe.kit.edu

Kapitel 2, Folie: 21, 10.06.2013

2.3 Halbleitende Metalloxide Einstellung der Korngrenzeigenschaften

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 22, 10.06.2013

2.3 Halbleitende Metalloxide Bändermodell für die Korngrenze eines ZnO-Varistors (1)

www.iwe.kit.edu

Kapitel 2, Folie: 23, 10.06.2013

2.3 Halbleitende Metalloxide Zusammenfassung des Varistoreffekts

- Varistoreffekt in dotierter ZnO-Keramik ist eine Eigenschaft der Korngrenzbereiche. ZnO-Körner selbst sind niederohmig.
- Varistoreffekt ist ein Korngrenzeffekt.
- Varistoreffekt setzt bei einer Spannung von ca. 3,0 \pm 0,5 V / Korngrenze ein.
- Korngrenzbereich bildet eine Potentialbarriere von 0,6 eV.
- Ansprechgeschwindigkeiten des nichtlinearen Stroms liegen bei einigen Nanosekunden
- Technisches Varistorsystem: ZnO + Bi₂O₃ + MnO₂ + Co₃O₄ + Sb₂O₃ + Cr₂O₃ + weitere Additive (bis zu 10 Komponenten sind üblich, Grund: Optimierung der Sekundäreigenschaften des jeweiligen Varistor-Typs)

[Einzinger 1982]

www.iwe.kit.edu

Kapitel 2, Folie: 24, 10.06.2013

Multiple-Choice-Frage MC1: Nichtlineare Widerstände

Zinkoxid-Varistoren

- a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.
- b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
- c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
- d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.

www.iwe.kit.edu

Kapitel 2, Folie: 25, 10.06.2013

Multiple-Choice-Frage MC1: Nichtlineare Widerstände

Zinkoxid-Varistoren

- a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.
 - b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
 - c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
 - d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.
 - dotierte ZnO-Keramik
 - Technisches Varistorsystem: ZnO + Bi₂O₃ + MnO₂ + Co₃O₄ + Sb₂O₃ + Cr₂O₃ + weitere Additive (bis zu 10 Komponenten sind üblich, Grund: Optimierung der Sekundäreigenschaften des jeweiligen Varistor-Typs)

www.iwe.kit.edu

Kapitel 2, Folie: 26, 10.06.2013

Multiple-Choice-Frage MC1: Nichtlineare Widerstände

Zinkoxid-Varistoren

- a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.
 - b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
 - c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
 - d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.

www.iwe.kit.edu

Kapitel 2, Folie: 27, 10.06.2013

Multiple-Choice-Frage MC1: Nichtlineare Widerstände

Zinkoxid-Varistoren

- a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.
 - b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
- c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
 - d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.
 - Varistoreffekt in dotierter ZnO-Keramik ist eine Eigenschaft der Korngrenzbereiche. ZnO-Körner selbst sind niederohmig.
 - Varistoreffekt ist ein Korngrenzeffekt.
 - Korngrenzbereich bildet eine Potentialbarriere von 0,6 eV.

www.iwe.kit.edu

Kapitel 2, Folie: 28, 10.06.2013

Multiple-Choice-Frage MC1: Nichtlineare Widerstände

Zinkoxid-Varistoren

- a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.
 - b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
- c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
 - d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.
 - Varistoreffekt setzt bei einer Spannung von ca. 3,0 ± 0,5 V / Korngrenze ein.

www.iwe.kit.edu

Kapitel 2, Folie: 29, 10.06.2013

2.3 Halbleitende Metalloxide Überblick nichtlineare Widerstände (1)

Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.

www.iwe.kit.edu

Kapitel 2, Folie: 30, 10.06.2013

Einsatzgebiete von Kaltleitern

www.iwe.kit.edu

Kapitel 2, Folie: 31, 10.06.2013

2.3 Halbleitende Metalloxide Bauelement: Keramischer Kaltleiter (PTC)

[www.atpsensor.com]

www.iwe.kit.edu

Kapitel 2, Folie: 32, 10.06.2013

2.3 Halbleitende Metalloxide Anwendungen von Kaltleitern

www.iwe.kit.edu

Kapitel 2, Folie: 33, 10.06.2013

2.3 Halbleitende Metalloxide Selbstregelnde Heizelemente im Automobil

[Catem]

www.iwe.kit.edu

Kapitel 2, Folie: 34, 10.06.2013

2.3 Halbleitende Metalloxide **PTC-Anwendungen und Bauformen**

- Heizelemente •
- Einschaltstrombegrenzer ٠
- Thermistoren für Motorstart-Anwendungen •
- Thermistoren für Überlastschutz •
- Grenztemperatur-Sensoren •
- Schaltanwendungen ٠
- Telekom-Anwendungen •
- Thermisches Management in LED-Schaltkreisen •

[Rauschert, EPCOS, Daimler]

www.iwe.kit.edu

Kapitel 2, Folie: 35, 10.06.2013

2.3 Halbleitende Metalloxide Temperaturabhängigkeit des Widerstands eines Kaltleiters

www.iwe.kit.edu

Kapitel 2, Folie: 36, 10.06.2013

2.3 Halbleitende Metalloxide Nichtlineare U/I-Kennlinie des PTCs aufgrund Eigenerwärmung

[Zinke 1982]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 37, 10.06.2013

Physikalische Grundlagen des Kaltleitereffekts

www.iwe.kit.edu

Kapitel 2, Folie: 38, 10.06.2013

2.3 Halbleitende Metalloxide Defektchemische Grundlagen von n-dotiertem Bariumtitanat (BaTiO₃)

Entstehung der Bariumleerstellen:

$$Ba_{Ba}^{x} + O_{O}^{x} \rightleftharpoons V_{Ba}^{//} + V_{O}^{\bullet \bullet} + BaO \uparrow$$

Entstehung der Sauerstoffleerstellen:

$$O_{O}^{X} \rightleftharpoons V_{O}^{\bullet\bullet} + 2e^{/} + \frac{1}{2}O_{2}(g)^{\uparrow}$$

n-Dotierung am Beispiel Lanthan:

$$La_{La}^{x} \rightleftharpoons La_{Ba}^{\bullet} + e^{/}$$

Elektroneutralität:

Akzeptoren

Donatoren

nstitut für erkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 39, 10.06.2013

2.3 Halbleitende Metalloxide Elektrische Eigenschaften der Korngrenzen in Bariumtitanat

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 40, 10.06.2013

2.3 Halbleitende Metalloxide Ladungstransport über Korngrenze

Karlsruher Institut für Technologie

Höhe des Potentials der Schottky-Barriere ΔW_B an der Korngrenze $\Delta W_B = \frac{e_0 [A_{KG}]^2}{8n\varepsilon_0\varepsilon_r}$ $[A_{KG}]: \text{Oberflächenladung}$ an der Korngrenze (V_{Ba}´´) Leitfähigkeit (Tunnelstrom)

 $\sigma \sim \exp\left(-\frac{\Delta W_B}{k \cdot T}\right)$

Widerstand der Korngrenzen

$$R_{KG} \sim \exp\left(\frac{\Delta W_B}{k \cdot T}\right)$$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 41, 10.06.2013

2.3 Halbleitende Metalloxide Phasenwechsel im Temperaturbereich des PTC-Verhaltens

Temperaturfunktion des Korngrenzwiderstands kann die Widerstandszunahme nicht erklären.

Von Bariumtitanat ist bekannt, dass in dem Temperaturbereich, wo das PTC-Verhalten vorherrscht, ein Phasenwechsel im Gitter des Perowskitkristalls stattfindet.

 \Rightarrow spontane Polarisation $P_{\rm s}$ als f(T)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 42, 10.06.2013

Vorgriff auf Ferroelektrika: Spontane Entstehung von Polarisationsladungen

- $T > T_C$: kubisches Gitter
 - paraelektrischer Zustand
 - *T_C*: Phasenumwandlungstemperatur bzw. Curie-Punkt

- $T < T_C$: tetragonales Gitter
 - ferroelektrischer Zustand
 - spontane Ladungsverschiebung
 - permanente Flächenladungen σ_P an den Kristallstirnflächen

www.iwe.kit.edu

Kapitel 2, Folie: 43, 10.06.2013

2.3 Halbleitende Metalloxide Kompensation der Potentialbarriere durch spontane Polarisation

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 44, 10.06.2013

2.3 Halbleitende Metalloxide Elektrisches Ersatzschaltbild und Zusammenfassung

Zusammenfassung

Keramische Kaltleiter bestehen aus polykristallinen ferroelektrischen n-leitenden Metalloxiden, wie z.B. n-dotiertes BaTiO₃.

Der PTC-Effekt beruht auf dem Zusammenspiel der Korngrenzsperrschicht (doppelte Schottky-Barriere, V_{Ba} ^{''}) und dem Phasenübergang ferroelektrisch/paraelektrisch des Kristalls bei $T = T_c$.

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 45, 10.06.2013

www.iwe.kit.edu

Kapitel 2, Folie: 46, 10.06.2013

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
- b) können aus Bariumtitanat-Einkristallen bestehen.
- c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

www.iwe.kit.edu

Kapitel 2, Folie: 47, 10.06.2013

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
 - b) können aus Bariumtitanat-Einkristallen bestehen.
 - c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

www.iwe.kit.edu

Kapitel 2, Folie: 48, 10.06.2013

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
- b) können aus Bariumtitanat-Einkristallen bestehen.
 - c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

www.iwe.kit.edu

Kapitel 2, Folie: 49, 10.06.2013

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

X

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
- b) können aus Bariumtitanat-Einkristallen bestehen.
 - c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

www.iwe.kit.edu

Kapitel 2, Folie: 50, 10.06.2013

Vorlesung 8

www.iwe.kit.edu

Kapitel 2, Folie: 1, 11.06.2013

Physikalische Grundlagen des Kaltleitereffekts

www.iwe.kit.edu

Kapitel 2, Folie: 2, 11.06.2013

2.3 Halbleitende Metalloxide Temperaturabhängigkeit des Widerstands eines Kaltleiters

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 3, 11.06.2013

2.3 Halbleitende Metalloxide Defektchemische Grundlagen von n-dotiertem Bariumtitanat (BaTiO₃)

Entstehung der Bariumleerstellen:

$$Ba_{Ba}^{x} + O_{O}^{x} \rightleftharpoons V_{Ba}^{\prime\prime} + V_{O}^{\bullet\bullet} + BaO\uparrow$$

Entstehung der Sauerstoffleerstellen:

$$O_{O}^{X} \rightleftharpoons V_{O}^{\bullet\bullet} + 2e^{/} + \frac{1}{2}O_{2}(g)^{\uparrow}$$

n-Dotierung am Beispiel Lanthan:

$$La_{La}^{x} \rightleftharpoons La_{Ba}^{\bullet} + e^{/}$$

Elektroneutralität:

Akzeptoren

Donatoren

www.iwe.kit.edu

Kapitel 2, Folie: 4, 11.06.2013

2.3 Halbleitende Metalloxide Elektrische Eigenschaften der Korngrenzen in Bariumtitanat

www.iwe.kit.edu

Kapitel 2, Folie: 5, 11.06.2013

2.3 Halbleitende Metalloxide Ladungstransport über Korngrenze

Karlsruher Institut für Technologie

Höhe des Potentials der Schottky-Barriere ΔW_B an der Korngrenze $\Delta W_B = \frac{e_0 [A_{KG}]^2}{8n\varepsilon_0\varepsilon_r}$ $[A_{KG}]$: Oberflächenladung an der Korngrenze (V_{Ba}´´) Leitfähigkeit (Tunnelstrom) (ΔW_B)

$$\sigma \sim \exp\left(-\frac{\Delta W_B}{k \cdot T}\right)$$

Widerstand der Korngrenzen

$$R_{KG} \sim \exp\left(\frac{\Delta W_B}{k \cdot T}\right)$$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 6, 11.06.2013

2.3 Halbleitende Metalloxide Phasenwechsel im Temperaturbereich des PTC-Verhaltens

Temperaturfunktion des Korngrenzwiderstands kann die Widerstandszunahme nicht erklären.

Von Bariumtitanat ist bekannt, dass in dem Temperaturbereich, wo das PTC-Verhalten vorherrscht, ein Phasenwechsel im Gitter des Perowskitkristalls stattfindet.

 \Rightarrow spontane Polarisation P_{s} als f(T)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 7, 11.06.2013

Vorgriff auf Ferroelektrika: Spontane Entstehung von Polarisationsladungen

- $T > T_C$: kubisches Gitter
 - paraelektrischer Zustand
 - *T_C*: Phasenumwandlungstemperatur bzw. Curie-Punkt

- $T < T_C$: tetragonales Gitter
 - ferroelektrischer Zustand
 - spontane Ladungsverschiebung
 - permanente Flächenladungen σ_P an den Kristallstirnflächen

www.iwe.kit.edu

Kapitel 2, Folie: 8, 11.06.2013

2.3 Halbleitende Metalloxide Kompensation der Potentialbarriere durch spontane Polarisation

www.iwe.kit.edu

Kapitel 2, Folie: 9, 11.06.2013

2.3 Halbleitende Metalloxide Elektrisches Ersatzschaltbild und Zusammenfassung

Zusammenfassung

Keramische Kaltleiter bestehen aus polykristallinen ferroelektrischen n-leitenden Metalloxiden, wie z.B. n-dotiertes BaTiO₃.

Der PTC-Effekt beruht auf dem Zusammenspiel der Korngrenzsperrschicht (doppelte Schottky-Barriere, V_{Ba} ´´) und dem Phasenübergang ferroelektrisch/paraelektrisch des Kristalls bei $T = T_c$.

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 10, 11.06.2013

www.iwe.kit.edu

Kapitel 2, Folie: 11, 11.06.2013

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
- b) können aus Bariumtitanat-Einkristallen bestehen.
- c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
 - b) können aus Bariumtitanat-Einkristallen bestehen.
 - c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

www.iwe.kit.edu

Kapitel 2, Folie: 13, 11.06.2013

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
- b) können aus Bariumtitanat-Einkristallen bestehen.
 - c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

www.iwe.kit.edu

Kapitel 2, Folie: 14, 11.06.2013

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

X

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
- b) können aus Bariumtitanat-Einkristallen bestehen.
 - c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

www.iwe.kit.edu

Kapitel 2, Folie: 15, 11.06.2013

Vorlesungsumfrage

www.iwe.kit.edu

Kapitel 2, Folie: 16, 11.06.2013

Ionenleitung

www.iwe.kit.edu

Kapitel 2, Folie: 17, 11.06.2013

2.5 Ionenleiter Elektronische und ionische Leitfähigkeitsanteile

Die elektrische Leitfähigkeit σ eines Werkstoffes setzt sich additiv aus den Leitfähigkeitsanteilen aller beweglichen Ladungsträger *k* zusammen.

In vielen Werkstoffen (z.B. in Ionenkristallen und Oxiden) trägt ein Teil der vorhandenen Ionen zur Leitfähigkeit bei. Die Anzahl der beweglichen Ionen entspricht der Anzahl der Defekte (Leerstellen) im Kristallgitter, da die Bewegung der Ionen über die Leerstellen erfolgt.

www.iwe.kit.edu

Kapitel 2, Folie: 18, 11.06.2013

2.5 Ionenleiter Elektronen-, Ionen- und Mischleiter

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 19, 11.06.2013

2.5 Ionenleiter Beispiel: Natriumchlorid (NaCI)

Beweglichkeit der Ladungsträger

 $\mu_{ion}(T) \sim \frac{1}{T} \exp\left(-\frac{E_A}{kT}\right)$

Ladungsträgerkonzentration

 $\left[A_{ion}(T)\right] \sim \exp\left(-\frac{E_S}{kT}\right)$

Leitfähigkeit

$$\sigma(T) = z_{ion} \cdot e_0 \cdot [A_{ion}(T)] \cdot \mu_{ion}(T)$$

 E_A : Aktivierungsenergie E_S : Schottky-Fehlordnungsenergie

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 20, 11.06.2013

2.5 Ionenleiter Beweglichkeit von Ionen bzw. Leerstellen im Gitter

Beispiel

Potentielle Energie von Kationenleerstellen $V_{\rm K}$ im Kristallgitter der Struktur K+A-

Diffusionskonstante bei Platzwechsel (Hopping)

$$D_V = D_0 \cdot \exp\left(-\frac{E_A}{k \cdot T}\right)$$

Einstein-Beziehung

$$u = \frac{e \cdot D}{k \cdot T}$$

Beweglichkeit

$$\mu_V = \frac{e \cdot D_0}{k \cdot T} \cdot \exp\left(-\frac{E_A}{k \cdot T}\right)$$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 21, 11.06.2013

2.5 Ionenleiter Transport von Ionen/Leerstellen bei angelegter Spannung

Transport von Kationenleerstellen V_{K} bei angelegter Spannung U

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 22, 11.06.2013

2.5 Ionenleiter Beispiel: Yttrium-dotiertes Zirkonoxid (YSZ)

Einbaugleichung für Yttriumoxid (Y_2O_3) in das Zirkonoxidgitter (ZrO_2): $Y_2O_3 \rightarrow 2Y'_{Zr} + 3O''_O + V''_O$

Durch Dotierung mit Y können Sauerstoffleerstellen im Zirkonoxidgitter gezielt erzeugt werden.

www.iwe.kit.edu

Kapitel 2, Folie: 23, 11.06.2013

2.5 Ionenleiter Leitfähigkeit in Abhängigkeit von der Yttrium Dotierung

σ -Zunahme

Ansteigende Konzentration beweglicher Ladungsträger (Bildung von Sauerstoffleerstellen).

σ -Abnahme

Verlust an Beweglichkeit durch Bildung so genannter Leerstellencluster.

[IWE 2005]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 24, 11.06.2013

2.5 Ionenleiter Leitfähigkeit in Abhängigkeit von der Temperatur

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 25, 11.06.2013

2.5 Ionenleiter Elektrolyte

Definition: Werkstoffe mit dominierendem ionischen Leitfähigkeitsanteil heißen Elektrolyte.

Überführungszahl:

$$t_{ion} = \frac{\sigma_{ion}}{\sigma_{total}}$$

 $t_{ion} = 1 \rightarrow$ idealer Elektrolyt (nicht existent)

 $1 - t_{ion} = 10^{-10} \dots 0.05 \rightarrow$ reale Elektrolyte

Elektrolyt	Werkstoffbeispiel	lon	$\sigma_{\!i\!o\!n}$ / S/m	T / °C	Anwendung
Li-Polymerelektrolyte	Li _{1,3} Al _{0,3} Ti _{1,7} (PO ₄) ₃	Li+	0.01	25	Li-Polymer-Batterien
Polymerelektrolyte	Nafion tm	H⁺	8.3	25	Polymerelektrolyt-Brennstoffzellen
β'-Aluminiumoxid	β′- Al ₂ O ₃	Na+	38	300	Na/S-, NaNiCI-Batterien
Karbonatschmelze	(Li/Na/K) ₂ CO ₃	CO ₃ ²⁻	35	650	Schmelzkarbonat-Brennstoffzellen
dot. Zirkondioxid	Zr _{0.85} Y _{0.15} O _{1.93}	O ²⁻	10	900	λ -Sonde, Festoxid-Brennstoffzellen

www.iwe.kit.edu

Kapitel 2, Folie: 26, 11.06.2013

2.5 Ionenleiter Elektrolyte

[Siemens AG, CT PS 4, Wa, 01/2004]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 27, 11.06.2013

2.5 Ionenleiter Elektrodentypen

Elektrode Elektrolyt + +++Elektrode **Blockierende Elektroden**

Anwendung: Doppelschichtkondensatoren

Anwendung: Batterien und Akkumulatoren

Gasdiffusionselektroden

Anwendung: Sensoren & Brennstoffzellen

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 28, 11.06.2013

2.5 Ionenleiter Elektrodentypen

Gasdiffusionselektroden

Anwendung: Sensoren & Brennstoffzellen

www.iwe.kit.edu

Kapitel 2, Folie: 29, 11.06.2013

2.5 Ionenleiter Elektrodentypen: Blockierende Elektroden

- Ladungsträgertransport in Elektrolyt und Elektroden
- keine Ladungstransferreaktion an der Grenzfläche Elektrode / Elektrolyt
 ⇒ kein Stromfluss (dc)
- Raumladungszonen an den Grenzflächen Elektrode / Elektrolyt
 ⇒ Doppelschichtkapazität
- Einsatz in **Doppelschichtkondensatoren**

Blockierende Elektroden verhindern den Ladungstransport über die Grenzfläche Elektrode/Elektrolyt. Innerhalb eines zulässigen Betriebsbereichs läuft keine Ladungstransferreaktion ab. Eine angelegte Spannung fällt vollständig über den Raumladungszonen an der Grenzfläche Elektrode/Elektrolyt ab.

www.iwe.kit.edu

Kapitel 2, Folie: 30, 11.06.2013

2.5 Ionenleiter Elektrodentypen

Anwendung: Doppelschichtkondensatoren

Gasdiffusionselektroden

Anwendung: Sensoren & Brennstoffzellen

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 31, 11.06.2013

2.5 Ionenleiter Elektrodentypen: Metallionenelektroden

- Ladungsträgertransport in Elektrolyt und Elektroden
- (verlustbehaftete) Ladungstransferreaktion an der Grenzfläche Elektrode/Elektrolyt
 - \Rightarrow Polarisationswiderstand R_{Pol}
 - ⇒ Stromfluss (dc) möglich
 - ⇒ (reversible) elektrochemische Umsetzung von Elektrode (und Elektrolyt)
- Einsatz in **Batterien** und **Akkumulatoren**

In einer Metallionenelektrode ist das Elektrodenmaterial (und z.T. auch der Elektrolyt) an der Ladungstransferreaktion beteiligt.

Bei Anlegen einer Spannung fließt ein Strom, bis die Elektrode vollständig umgesetzt ist.

www.iwe.kit.edu

Kapitel 2, Folie: 32, 11.06.2013

Funktionsprinzip einer Lithium-Ionen Batterie

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 33, 11.06.2013
2.5 Ionenleiter Das Lithium-Ionen-System

Zellreaktion

Positive:

```
LiCoO_2 \rightleftharpoons Li_{1-x}CoO_2 + x Li^+ + x e^-
(0 ≤ x ≤ 0,6)
```

Negative:

```
x \operatorname{Li}^+ + \operatorname{C}_6(\operatorname{Graphit}) + x \operatorname{e}^- \rightleftharpoons \operatorname{Li}_x \operatorname{C}_6
(0 ≤ x ≤ 1)
```

Gesamtreaktion:

 $\text{LiCoO}_2 + 0.6 \text{ C}_6 \rightleftharpoons \text{Li}_{0,4}\text{CoO}_2 + 0.6 \text{ LiC}_6$

Kein metallisches Lithium in der Zelle.

Der Elektrolyt nimmt nicht an der Reaktion teil und dient als reines Transportmedium für Lithium-Ionen.

 \Rightarrow weniger Elektrolyt erforderlich

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 34, 11.06.2013

2.5 Ionenleiter Elektrodentypen

Anwendung: Doppelschichtkondensatoren

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 35, 11.06.2013

2.5 Ionenleiter Elektrodentypen: Gasdiffusionselektroden

- Ladungsträgertransport in Elektrolyt und Elektroden
- (verlustbehaftete) Ladungstransferreaktion an der Dreiphasengrenze Gasraum/Elektrode/Elektrolyt
 - \Rightarrow Polarisationswiderstand R_{Pol}
 - ⇒ Stromfluss (dc) möglich
 - ⇒ poröse, katalytisch aktive Elektrode
- Einsatz in **Sensoren** und **Brennstoffzellen**

In einer Gasdiffusionselektrode fungiert das Elektrodenmaterial als elektronischer Leiter und Katalysator, ist aber an der Ladungstransferreaktion nicht beteiligt. Elektrode (und Elektrolyt) verändern sich bei Stromfluss nicht.

www.iwe.kit.edu

Kapitel 2, Folie: 36, 11.06.2013

2.5 Ionenleiter Von der potentiometrischen Lambda-Sonde zur Brennstoffzelle

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 37, 11.06.2013

2.5 Ionenleiter Von der potentiometrischen Lambda-Sonde zur Brennstoffzelle

www.iwe.kit.edu

Kapitel 2, Folie: 38, 11.06.2013

2.5 Ionenleiter Aufbau und Prinzip der potentiometrischen λ -Sonde (2)

Im Gleichgewichtszustand muss sich das elektrochemische Potential auf beiden Seiten angleichen (Gibbs'sche Thermodynamik).

elektrochemisches Potential: $\tilde{\mu} = \mu + nF\Phi$

$$\begin{split} \tilde{\mu}_{O_2}^{\text{Luft}} &= \mu_o^p + RT \cdot \ln\left(p_{O_2}^{\text{Luft}}\right) + nF\Phi_1 \\ \tilde{\mu}_{O_2}^{\text{Abgas}} &= \mu_o^p + RT \cdot \ln\left(p_{O_2}^{\text{Abgas}}\right) + nF\Phi_2 \end{split}$$

Gleichgewichtsbedingung: $\tilde{\mu}_{O_2}^{Luft} = \tilde{\mu}_{O_2}^{Abgas}$

Für jedes Sauerstoffmolekül O_2 werden vier Elektronen verschoben, d.h. n = 4.

$$U_{\text{Nernst}} = \Phi_2 - \Phi_1 = \frac{RT}{4F} \cdot \ln \left(\frac{p_{\text{O}_2}^{\text{Luft}}}{p_{\text{O}_2}^{\text{Abgas}}} \right)$$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 39, 11.06.2013

2.5 Ionenleiter Abgasreinigungskonzept moderner Benzinmotoren

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 40, 11.06.2013

2.5 Ionenleiter Von der potentiometrischen Lambda-Sonde zur Brennstoffzelle

www.iwe.kit.edu

Kapitel 2, Folie: 41, 11.06.2013

2.5 Ionenleiter Ausblick: Erzeugung elektrischer Energie durch Brennstoffzellen

Beispiel: Hochtemperatur-Festkörperelektrolyt-Brennstoffzelle, engl. Solid Oxide Fuel Cell (SOFC)

In Brennstoffzellen wird die chemische Energie des Brennstoffes direkt in elektrische Nutzenergie umgewandelt. Daraus resultiert ein hoher theoretischer Nettowirkungsgrad.

www.iwe.kit.edu

Kapitel 2, Folie: 42, 11.06.2013

2.5 Ionenleiter Aufbau und Mikrostruktur einer SOFC-Einzelzelle

www.iwe.kit.edu

Kapitel 2, Folie: 43, 11.06.2013

2.5 Ionenleiter Stationäres SOFC-Heizgerät für Haushalt (1 kW)

Sulzer Hexis

- Brennstoffzelle
- Betriebstemperatur
- •Brenngas
- Elektrische Leistung
- Thermische Leistung Brennstoffzelle
- Thermische Leistung Zusatzbrenner
- Elektrischer Wirkungsgrad
- •Gesamtwirkungsgrad

SOFC 900 °C Erdgas 1 kW max. 2,5 kW max. 12, 16, 22 kW 25 ... 30 % (Ziel > 30 %)

etwa 85 %

www.iwe.kit.edu

Kapitel 2, Folie: 44, 11.06.2013

2.5 Ionenleiter Weiterführende Veranstaltungen

Systematische Produktentwicklung in der Sensorik

Wintersemester 2 SWS

Dr.-Ing. J. Riegel (Fa. Bosch) Prof. Dr.-Ing. E. Ivers-Tiffée

Inhalt

- Lambda-Sonde
- alternative
 Abgassensoren
- Produktentwicklung
- Design of Experiments
- Qualitätsmanagement
- praktischer Versuch

Sensoren

Wintersemester 2 SWS Dr.-Ing. W. Menesklou

Inhalt

- Mech. Sensoren
- Temperatursensoren
- Chemische Sensoren
- Optische Sensoren
- Magnet. Sensoren
- Gassensoren

www.iwe.kit.edu

Kapitel 2, Folie: 45, 11.06.2013

2.5 Ionenleiter Weiterführende Veranstaltungen

Batterien und Brennstoffzellen

Wintersemester 2 SWS Prof. Dr.-Ing. E. Ivers-Tiffée

Batterie- und Brennstoffzellensysteme

Sommersemester 2 SWS

Dr.-Ing. A. Weber

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 46, 11.06.2013

Vorlesung 9

www.iwe.kit.edu

Kapitel 2, Folie: 1, 21.06.2013

Ionenleiter

www.iwe.kit.edu

Kapitel 2, Folie: 2, 21.06.2013

2.5 Ionenleiter Elektrodentypen

Elektrode Elektrolyt + +++Elektrode **Blockierende Elektroden**

Anwendung: Doppelschichtkondensatoren

Anwendung: Batterien und Akkumulatoren

Gasdiffusionselektroden

Anwendung: Sensoren & Brennstoffzellen

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 3, 21.06.2013

2.5 Ionenleiter Elektrodentypen

Gasdiffusionselektroden

Anwendung: Sensoren & Brennstoffzellen

Kapitel 2, Folie: 4, 21.06.2013

2.5 Ionenleiter Elektrodentypen: Blockierende Elektroden

- Ladungsträgertransport in Elektrolyt und Elektroden
- keine Ladungstransferreaktion an der Grenzfläche Elektrode / Elektrolyt
 ⇒ kein Stromfluss (dc)
- Raumladungszonen an den Grenzflächen Elektrode / Elektrolyt
 ⇒ Doppelschichtkapazität
- Einsatz in Doppelschichtkondensatoren

Blockierende Elektroden verhindern den Ladungstransport über die Grenzfläche Elektrode/Elektrolyt. Innerhalb eines zulässigen Betriebsbereichs läuft keine Ladungstransferreaktion ab. Eine angelegte Spannung fällt vollständig über den Raumladungszonen an der Grenzfläche Elektrode/Elektrolyt ab.

www.iwe.kit.edu

Kapitel 2, Folie: 5, 21.06.2013

2.5 Ionenleiter Elektrodentypen

Anwendung: Doppelschichtkondensatoren

Gasdiffusionselektroden

Anwendung: Sensoren & Brennstoffzellen

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 6, 21.06.2013

2.5 Ionenleiter Elektrodentypen: Metallionenelektroden

- Ladungsträgertransport in Elektrolyt und Elektroden
- (verlustbehaftete) Ladungstransferreaktion an der Grenzfläche Elektrode/Elektrolyt
 - \Rightarrow Polarisationswiderstand R_{Pol}
 - ⇒ Stromfluss (dc) möglich
 - ⇒ (reversible) elektrochemische Umsetzung von Elektrode (und Elektrolyt)
- Einsatz in **Batterien** und **Akkumulatoren**

In einer Metallionenelektrode ist das Elektrodenmaterial (und z.T. auch der Elektrolyt) an der Ladungstransferreaktion beteiligt.

Bei Anlegen einer Spannung fließt ein Strom, bis die Elektrode vollständig umgesetzt ist.

www.iwe.kit.edu

Kapitel 2, Folie: 7, 21.06.2013

Funktionsprinzip einer Lithium-Ionen Batterie

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 8, 21.06.2013

2.5 Ionenleiter Das Lithium-Ionen-System

Zellreaktion

Positive:

```
LiCoO_2 \rightleftharpoons Li_{1-x}CoO_2 + x Li^+ + x e^-
(0 ≤ x ≤ 0,6)
```

Negative:

```
x \operatorname{Li}^+ + \operatorname{C}_6(\operatorname{Graphit}) + x \operatorname{e}^- \rightleftharpoons \operatorname{Li}_x \operatorname{C}_6
(0 ≤ x ≤ 1)
```

Gesamtreaktion:

 $\text{LiCoO}_2 + 0.6 \text{ C}_6 \rightleftharpoons \text{Li}_{0,4}\text{CoO}_2 + 0.6 \text{ LiC}_6$

Kein metallisches Lithium in der Zelle.

Der Elektrolyt nimmt nicht an der Reaktion teil und dient als reines Transportmedium für Lithium-Ionen.

 \Rightarrow weniger Elektrolyt erforderlich

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 9, 21.06.2013

2.5 Ionenleiter Elektrodentypen

Anwendung: Doppelschichtkondensatoren

Sensoren & Brennstoffzellen

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 10, 21.06.2013

2.5 Ionenleiter Elektrodentypen: Gasdiffusionselektroden

- Ladungsträgertransport in Elektrolyt und Elektroden
- (verlustbehaftete) Ladungstransferreaktion an der Dreiphasengrenze Gasraum/Elektrode/Elektrolyt
 - \Rightarrow Polarisationswiderstand R_{Pol}
 - ⇒ Stromfluss (dc) möglich
 - ⇒ poröse, katalytisch aktive Elektrode
- Einsatz in Sensoren und Brennstoffzellen

In einer Gasdiffusionselektrode fungiert das Elektrodenmaterial als elektronischer Leiter und Katalysator, ist aber an der Ladungstransferreaktion nicht beteiligt. Elektrode (und Elektrolyt) verändern sich bei Stromfluss nicht.

www.iwe.kit.edu

Kapitel 2, Folie: 11, 21.06.2013

2.5 Ionenleiter Von der potentiometrischen Lambda-Sonde zur Brennstoffzelle

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 12, 21.06.2013

2.5 Ionenleiter Von der potentiometrischen Lambda-Sonde zur Brennstoffzelle

www.iwe.kit.edu

Kapitel 2, Folie: 13, 21.06.2013

2.5 Ionenleiter Aufbau und Prinzip der potentiometrischen λ -Sonde (2)

Im Gleichgewichtszustand muss sich das elektrochemische Potential auf beiden Seiten angleichen (Gibbs'sche Thermodynamik).

elektrochemisches Potential: $\tilde{\mu} = \mu + nF\Phi$

$$\begin{split} \tilde{\mu}_{O_2}^{\text{Luft}} &= \mu_o^p + RT \cdot \ln\left(p_{O_2}^{\text{Luft}}\right) + nF\Phi_1 \\ \tilde{\mu}_{O_2}^{\text{Abgas}} &= \mu_o^p + RT \cdot \ln\left(p_{O_2}^{\text{Abgas}}\right) + nF\Phi_2 \end{split}$$

Gleichgewichtsbedingung: $\tilde{\mu}_{O_2}^{Luft} = \tilde{\mu}_{O_2}^{Abgas}$

Für jedes Sauerstoffmolekül O_2 werden vier Elektronen verschoben, d.h. n = 4.

$$U_{\text{Nernst}} = \Phi_2 - \Phi_1 = \frac{RT}{4F} \cdot \ln \left(\frac{p_{\text{O}_2}^{\text{Luft}}}{p_{\text{O}_2}^{\text{Abgas}}} \right)$$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 14, 21.06.2013

2.5 Ionenleiter Abgasreinigungskonzept moderner Benzinmotoren

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 15, 21.06.2013

2.5 Ionenleiter Von der potentiometrischen Lambda-Sonde zur Brennstoffzelle

www.iwe.kit.edu

Kapitel 2, Folie: 16, 21.06.2013

2.5 Ionenleiter Ausblick: Erzeugung elektrischer Energie durch Brennstoffzellen

Beispiel: Hochtemperatur-Festkörperelektrolyt-Brennstoffzelle, engl. Solid Oxide Fuel Cell (SOFC)

In Brennstoffzellen wird die chemische Energie des Brennstoffes direkt in elektrische Nutzenergie umgewandelt. Daraus resultiert ein hoher theoretischer Nettowirkungsgrad.

www.iwe.kit.edu

Kapitel 2, Folie: 17, 21.06.2013

2.5 Ionenleiter Aufbau und Mikrostruktur einer SOFC-Einzelzelle

www.iwe.kit.edu

Kapitel 2, Folie: 18, 21.06.2013

2.5 Ionenleiter Stationäres SOFC-Heizgerät für Haushalt (1 kW)

Sulzer Hexis

- Brennstoffzelle
- Betriebstemperatur
- •Brenngas
- Elektrische Leistung
- Thermische Leistung Brennstoffzelle
- Thermische Leistung Zusatzbrenner
- Elektrischer Wirkungsgrad
- •Gesamtwirkungsgrad

SOFC 900 °C Erdgas 1 kW max. 2,5 kW max. 12, 16, 22 kW 25 ... 30 % (Ziel > 30 %)

etwa 85 %

www.iwe.kit.edu

Kapitel 2, Folie: 19, 21.06.2013

2.5 Ionenleiter Weiterführende Veranstaltungen

Systematische Produktentwicklung in der Sensorik

Wintersemester 2 SWS

Dr.-Ing. J. Riegel (Fa. Bosch) Prof. Dr.-Ing. E. Ivers-Tiffée

Inhalt

- Lambda-Sonde
- alternative
 Abgassensoren
- Produktentwicklung
- Design of Experiments
- Qualitätsmanagement
- praktischer Versuch

Sensoren

Wintersemester 2 SWS Dr.-Ing. W. Menesklou

Inhalt

- Mech. Sensoren
- Temperatursensoren
- Chemische Sensoren
- Optische Sensoren
- Magnet. Sensoren
- Gassensoren

www.iwe.kit.edu

Kapitel 2, Folie: 20, 21.06.2013

2.5 Ionenleiter Weiterführende Veranstaltungen

Batterien und Brennstoffzellen

Wintersemester 2 SWS Prof. Dr.-Ing. E. Ivers-Tiffée

Batterie- und Brennstoffzellensysteme

Sommersemester 2 SWS

Dr.-Ing. A. Weber

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 21, 21.06.2013

Das Kapitel 2: Supraleiter wird nach dem Kapitel zu Dielektrika behandelt.

www.iwe.kit.edu

Kapitel 2, Folie: 22, 21.06.2013

Kapitel 3: Dielektrische Werkstoffe und Ihre Bauelemente

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 23, 21.06.2013

Kapitel 3: Dielektrische Werkstoffe und Ihre Bauelemente

3.1	Einführung
-----	------------

- 3.2 Polarisationsmechanismen
- 3.3 Verhalten von Dielektrika im Wechselfeld
- 3.4 Piezoelektrische Werkstoffe
- 3.5 Ferroelektrische Werkstoffe
- 3.6 Pyroelektrische Werkstoffe
- 3.7 Kondensatoren

www.iwe.kit.edu

Kapitel 2, Folie: 24, 21.06.2013

3.1 Einführung Einsatzbereich Kondensatoren

www.iwe.kit.edu

Kapitel 2, Folie: 25, 21.06.2013

3.1 Einführung Dielektrisches Verhalten von Werkstoffen

Feldstärke und Verschiebungsdichte

Die Verschiebungsdichte *D* ist die Ladung pro Fläche, die nach Anlegen eines elektrischen Felds *E* auf die Platten verschoben wird.

Dielektrizitätszahl

In linearer, isotroper Materie ist die angelegte Feldstärke *E* proportional zur elektrischen Verschiebungsdichte *D*.

$$\vec{D} = \varepsilon_0 \cdot \varepsilon_r \cdot \vec{E}$$

 ε_r : relative Dielektrizitätszahl des Werkstoffs

 ε_0 : elektrische Feldkonstante

Die physikalische Deutung dieser Beziehung, die Behandlung nichtlinearer Materie sowie die Querempfindlichkeit der Dielektrizitätszahl zu anderen physikalischen Größen (z.B. Temperatur, Frequenz) und die Anwendung in Bauelementen ist Gegenstand des folgenden Kapitels.

www.iwe.kit.edu

Kapitel 2, Folie: 26, 21.06.2013

3.1 Einführung Polarisationsmechanismen im Überblick

Auslenkung von Kationen gegen Anionen im

Ausrichtung permanent vorhandener Dipole

Ladungsverschiebung in polykristallinen und

Grundtypen der Polarisation	Spezielle Dielektrika		
Elektronenpolarisation Auslenkung von Atomhülle gegen Atomkern	Piezoelektrizität Polarisation wird durch mechanische Dehnung induziert und umgekehrt.		
Ionenpolarisation	5 5		

Pyroelektrizität Spontane Polarisation unabhängig vom elektrischen Feld

Ferroelektrizität Spontane Polarisation durch elektrisches Feld beeinflussbar

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

Orientierungspolarisation

Raumladungspolarisation

Kompositwerkstoffen

Kristallgitter

www.iwe.kit.edu

Kapitel 2, Folie: 27, 21.06.2013

3.1 Einführung Messung der Dielektrizitätszahl

Sawyer-Tower Schaltung

Probe: Plattenkondensator mit dünnem Dielektrikum

$$C_{\text{Probe}} = \frac{Q}{U} = \frac{D \cdot A}{E \cdot d} = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$$

Aufgrund der Serienschaltung ist die Ladung *Q* auf Referenz- und Probekondensator gleich groß.

 $Q = C_{\text{Ref}} \cdot U_{\text{Mess}}$ $Q = C_{\text{Probe}} \cdot (U_0 - U_{\text{Mess}})$

Damit gilt für die relative Dielektrizitätszahl des Dielektrikums:

$$\varepsilon_r = \frac{d}{\varepsilon_0 \cdot A} \cdot C_{\text{Ref}} \cdot \frac{U_{\text{Mess}}}{U_0 - U_{\text{Mess}}}$$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 28, 21.06.2013

3.2 Polarisationsmechanismen Plattenkondensator bei konstantem elektrischen Feld

- D₀ : Vakuumverschiebungsdichte
- $\sigma_{\rm F}$: freie, flächenbezogene Ladung auf den Kondensatorplatten

[lvers-Tiffée 2007]

 $\vec{D}_0 = \varepsilon_0 \cdot \vec{E}$ elektrische Feldkonstante $\varepsilon_0 = 8,85 \cdot 10^{-12} \text{ As/Vm}$

Verschiebungsdichte im Dielektrikum

- *P* : Polarisation
- σ_P: gebundene, flächenbezogene
 Polarisationsladung auf der Außenseite
 des Dielektrikums

$$\vec{D} = \varepsilon_0 \cdot \vec{E} + \vec{P}$$
 $P = \text{fkt} (E, T, \sigma_M, ...)$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 29, 21.06.2013

3.2 Polarisationsmechanismen Dielektrizitätszahl und Suszeptibilität in linearer Materie

Verschiebungsdichte in Materie (allg.)

 $D = \varepsilon_0 \cdot E + P$

In linearer Materie sind Feldstärke und Polarisation proportional

 $P = \varepsilon_0 \cdot \chi_e \cdot E$ $\chi_e : \text{elektrische Suszeptibilität}$

Daher gilt $D = \varepsilon_0 \cdot (1 + \chi_e) \cdot E$

Definition: relative Dielektrizitätszahl

$$\varepsilon_r = 1 + \chi_e$$

 $\vec{D} = \varepsilon_0 \cdot \varepsilon_r \cdot \vec{E}$ in linearer Materie

Beiträge zur elektrischen Suszeptibilität

$$\chi_e = \chi_{el} + \chi_{ion} + \chi_{or} + \chi_{RL}$$

unpolare/ polare Dielektrika

Xel	:	Elektronenpolarisation
Xion	:	Ionenpolarisation
Xor	:	Orientierungspolarisation
χ_{RL}	:	Raumladungspolarisation

[Ivers-Tiffée 2007]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 30, 21.06.2013

3.2 Polarisationsmechanismen Grundtypen der dielektrischen Polarisation

Grundtypen

Elektronenpolarisation

Auslenkung von Atomkern und -hülle (induzierte Dipole)

Ionenpolarisation

Auslenkung von Kationen und Anionen (induzierte Dipole)

Orientierungspolarisation

Ausrichtung permanent vorhandener Dipole

Raumladungspolarisation

Ansammlung freier Ladungsträgern an isolierenden Korngrenzen

[Schaumburg 1994]

www.iwe.kit.edu

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

Institut für

Kapitel 2, Folie: 31, 21.06.2013

3.2 Polarisationsmechanismen **Dipolmoment, Polarisation und Polarisierbarkeit**

Elektrisches Dipolmoment p

Das Moment eines elektrischen Dipols *p* ist definiert als Produkt aus Ladung und Abstand, um den die Ladungen Q verschoben sind.

$$\vec{p} = |Q| \cdot \vec{d}$$
 [p] = A

$$[p] = As m$$

Polarisation P

Die Polarisation *P* ist definiert als Summe der Dipolmomente pro Volumen.

$$\vec{P} = \frac{1}{V} \sum_{i=1}^{N} \vec{p}_i = \frac{N}{V} \cdot \vec{p} = n \cdot \vec{p} \qquad [P] = \text{As m}^{-2}$$

p : mittleres Dipolmoment pro Volumen *V* n : Konzentration der Dipole

Polarisierbarkeit α

In einfachen Fällen ist das Dipolmoment proportional zur Feldstärke, die am Ort des Dipols wirkt.

 $[\alpha] = As m^2 V^{-1}$ $\vec{p} = \alpha \cdot \vec{E}$

erkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 32, 21.06.2013

3.2 Polarisationsmechanismen Konzept der lokalen Feldstärke (1)

Lokale Feldstärke

Nach Lorentz ist die lokale Feldstärke das elektrische Feld, welches innerhalb der Materie wirkt und diese auf atomarer Ebene polarisiert.

Hendrik Antoon Lorentz * 1853 † 1928

*E*_{*lok*} : lokale elektrische Feldstärke *E* : makroskopische/ äußere Feldstärke

www.iwe.kit.edu

Kapitel 2, Folie: 33, 21.06.2013

3.2 Polarisationsmechanismen Konzept der lokalen Feldstärke (2)

Betrachtet wird ein Raum, der durch Herausschneiden einer Kugel um einen beliebigen Punkt im Festkörper entsteht. In diesem Punkt setzt sich die lokale Feldstärke aus drei Teilfeldern zusammen:

- makroskopisches, äußeres Feld E
- elektrisches Fernfeld *E*_{fern} der induzierten Dipole im Dielektrikum (dargestellt als Polarisation auf der Kugeloberfläche)
- elektrisches Nahfeld *E*_{nah} der Atome/ Ionen, die sich im Kugelhohlraum befinden

$$\vec{E}_{lok} = \vec{E} + \vec{E}_{fern} + \vec{E}_{nah}$$

Lorentz berechnet für die lokale Feldstärke (im Fall von kubisch symmetrischen Gittern):

$$\vec{E}_{lok} = \vec{E} + \frac{\vec{P}}{3\varepsilon_0}$$

[Fasching 1994]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 34, 21.06.2013

3.2 Polarisationsmechanismen Zusammenhang zwischen Polarisierbarkeit und Suszeptibilität

Clausius-Mossotti-Beziehung

Für die Polarisation des Festkörpers gilt:

$$P = n\alpha \cdot E_{lok} = n\alpha \cdot \left(E + \frac{P}{3\varepsilon_0}\right)$$

lokales Feld nach Lorentz einsetzen

nach *P* auflösen ergibt $P = n\alpha \cdot \left(1 - \frac{n\alpha}{3\varepsilon_0}\right)^{-1} \cdot E$ Koeffizientenvergleich mit $P = \varepsilon_0 \cdot (\varepsilon_r - 1) \cdot E$ ergibt die Clausius-Mossotti-Beziehung

$$\frac{n\alpha}{3\varepsilon_0} = \frac{\varepsilon_r - 1}{\varepsilon_r + 2} \quad \text{bzw.} \quad \frac{n\alpha}{3\varepsilon_0} = \frac{\chi_e}{\chi_e + 3}$$

Für kleine Suszeptibilitäten ($\chi_e \ll 3$) gilt:

$$\chi_e = \varepsilon_r - 1 = \frac{n}{\varepsilon_0} \cdot \alpha$$

Ottaviano Mossotti * 1791 † 1863

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 35, 21.06.2013

3.2 Polarisationsmechanismen Elektronenpolarisation

www.iwe.kit.edu

Kapitel 2, Folie: 36, 21.06.2013

3.2 Polarisationsmechanismen Elektronenpolarisation bei Gasen

Edelgase (1 bar, 20 °C)	$\chi_e\cdot 10^{\text{-5}}$	Molekülgase (1 bar, 20 °C)	$\chi_e \cdot 10^{-5}$
Helium (He) Neon (Ne) Argon (Ar) Krypton (Kr) Xenon (Xe)	6,88 13 55 77 124 [lvers-Tiffée 2007]	Wasserstoff (H_2) Sauerstoff (O_2) Stickstoff (N_2) Kohlendioxid (CO_2) Schwefelhexafluorid (SF_6)	26 52 58 98 205 [Münch 1987]

Die Polarisierbarkeit eines Einzelatoms ist nur von dessen Radius abhängig.

www.iwe.kit.edu

Kapitel 2, Folie: 37, 21.06.2013

3.2 Polarisationsmechanismen Ionenpolarisation

Institut für

Werkstoffe der Elektrotechnik

Prof. Dr.-Ing. Ellen Ivers-Tiffée - Passive Bauelemente

In einem Ionenkristall lenkt das elektrische Feld *E* Kationen (+Q) und Anionen (-Q) in entgegengesetzte Richtung aus. Im Gleichgewicht ist elektrische Kraft gleich Rückstellkraft (Ladungsverschiebung um d).

 $Q \cdot E = k \cdot d$

Konstante *k* abhängig von Kristallstruktur, Gitterabstand, Bindungsenergie, etc.

Induziertes Dipolmoment

$$p = \frac{Q}{2} \cdot (a + d - (a - d)) = \frac{Q^2}{k} \cdot E = \alpha_{ion} \cdot E$$

Ionische Suszeptibilität

$$\chi_{ion} \approx \frac{nQ^2}{\varepsilon_0 k}$$
 bzw. $\chi_{ion} \approx \sum_i \frac{n_i Q_i^2}{\varepsilon_0 k_i}$
(n_i : Dichte der Atom-/ Molekülsorte k

www.iwe.kit.edu

Kapitel 2, Folie: 38, 21.06.2013

3.2 Polarisationsmechanismen Vergleich ionischer und elektronischer Polarisation

Alkali-Halogenide LiF LiCl LiBr (I/VII-Verbindungen) LiJ *d*_{ion}=2,1 2,6 2,7 3,0 Kation (positiv) NaF NaCl NaBr NaJ Anion (negativ) 0 0 2,3 2,8 3,2 2,9 $lpha_{el} \ lpha_{ion}$ Polarisierbarkeit KF **KCI** KBr KJ d_{ion} : Ionenabstand in 10⁻¹⁰ m 00 0 \mathbf{O} 2,7 3,1 3,3 3,5 RbF **RbCl** RbBr RbJ 2,8 3,3 3,5 [Ivers-Tiffée 2007]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 39, 21.06.2013

3.2 Polarisationsmechanismen Orientierungspolarisation

Bei polaren Dielektrika werden permanente Dipole im elektrischen Feld *E* ausgerichtet.

Dipolmoment in Feldrichtung

 $p_i = p_0 \cdot \cos \Theta_i$ (p_0 : molekularer Dipol)

Polarisation

 Θ_{4}

$$P = \frac{1}{V} \sum_{i=1}^{N} p_i$$
 (N: Anzahl der Dipole)

Mittlere Polarisierbarkeit $\alpha_{or} \approx \frac{p_0^2}{3kT}$ Herl folge

Herleitung siehe
 folgende Folien

Suszeptibilität

$$\chi_{or} \approx \frac{n \cdot p_0^2}{3kT \cdot \varepsilon_0}$$

(n: Dichte der Dipole)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 40, 21.06.2013

3.2 Polarisationsmechanismen Exkurs: Herleitung der Orientierungspolarisation (1)

Polarisation

$$P = \frac{1}{V} \sum_{i=1}^{N} p_i = \frac{N}{V} \cdot \overline{p} = n \cdot p_0 \cdot \overline{\cos \Theta}$$

- \overline{p} : Mittleres Dipolmoment
- *n* : Dipoldichte, Dipole pro Volumen

Potentielle Energie eines Dipols

$$W_P = \int M \cdot d\Theta = \int p_0 \cdot E \cdot \sin(\Theta) \cdot d\Theta$$
$$= -p_0 \cdot E \cdot \cos(\Theta)$$

M : Drehmoment

Die thermische Bewegung der Dipole wirkt der Ausrichtung durch das elektrische Feld *E* entgegen ⇔ mit steigender Temperatur werden die Dipole weniger stark ausgerichtet.

Boltzmannverteilung

$$f(\Theta) = \exp\left(-\frac{W_P}{kT}\right) = \exp\left(\frac{p_0 E}{kT}\cos(\Theta)\right)$$

Für E = 0 sind die molekularen Dipole in allen Raumrichtungen Θ gleichverteilt.

 $f(\Theta) = 1$

Die Polarisation errechnet sich aus der Mittelwertbildung über alle Raumwinkel anhand der Verteilung $f(\Theta)$.

www.iwe.kit.edu

Kapitel 2, Folie: 41, 21.06.2013

3.2 Polarisationsmechanismen Exkurs: Herleitung der Orientierungspolarisation (2)

Polarisation

 $P = \int_{0}^{\pi} p_{0} \cdot \cos(\Theta) \cdot n(\Theta) \cdot d\Theta$ Dipolmoment in Anzahldichte Feldrichtung der Dipole

$$n(\Theta) \cdot d\Theta \sim f(\Theta) \cdot 2\pi \cdot \sin(\Theta) \cdot d\Theta$$

$$\rightarrow P = c \cdot 2\pi p_0 \cdot \int_0^{\pi} \sin(\Theta) \cdot \cos(\Theta) \cdot f(\Theta) \cdot d\Theta$$

Randbedingung
$$n = \int_{0}^{\pi} n(\Theta) d\Theta$$

 $\rightarrow c = \frac{n}{\int_{0}^{\pi} 2\pi \cdot \sin(\Theta) \cdot f(\Theta) \cdot d\Theta}$

Substitutionen

$$x = \cos(\Theta) \rightarrow dx = -\sin(\Theta)d\Theta$$
$$\beta = \frac{p_0 E}{kT}$$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 2, Folie: 42, 21.06.2013

3.2 Polarisationsmechanismen Exkurs: Herleitung der Orientierungspolarisation (3)

$$P = np_0 \cdot \frac{\int_{-1}^{-1} x \cdot \exp(\beta x) \cdot dx}{\int_{-1}^{-1} \exp(\beta x) \cdot dx}$$
$$= n \cdot p_0 \cdot \left[\coth(\beta) - \frac{1}{\beta} \right] \equiv n \cdot p_0 \cdot L(\beta)$$

Langevin-Funktion $L(\beta)$

für $\beta << 1$ gilt näherungsweise $L(\beta) \approx \frac{\beta}{3}$

In technisch relevanten Fällen ist die Näherung erfüllt, da $p_0 E \ll kT$ gilt.

Polarisation, Polarisierbarkeit und elektrische Suszeptibilität bei Orientierungspolarisation:

$$P \approx n \cdot \frac{p_0^2}{3kT} \cdot E$$
$$\alpha_{or} \approx \frac{p_0^2}{3kT}$$
$$\chi_{or} \approx \frac{n \cdot p_0^2}{3kT \cdot \varepsilon_0}$$

www.iwe.kit.edu

Kapitel 2, Folie: 43, 21.06.2013

3.2 Polarisationsmechanismen Atomare Dipolmomente einiger Moleküle mit Orientierungspolarisation

Molekül	Dipolmoment p ₀ / 10 ⁻²⁸ As·cm		
Kohlenmonoxid (CO)	0,3		
Schwefelwasserstoff (H ₂ S)	3,2		
Chlorwasserstoff (HCI)	3,8		
Ammoniak (NH ₃)	4,9		
Schwefeldioxid (SO ₂)	5,4		
Ethanol (C ₂ H ₅ OH)	5,6		
Wasser H ₂ O	6,2		

Einheit des Dipolmoment: $3,33 \cdot 10^{-28}$ As·cm = 1 Debye

www.iwe.kit.edu

Kapitel 2, Folie: 44, 21.06.2013

www.iwe.kit.edu

Kapitel 2, Folie: 45, 21.06.2013

Vorlesung 10

www.iwe.kit.edu

Kapitel 3, Folie: 1, 21.06.2013

3.2 Polarisationsmechanismen Grundtypen der dielektrischen Polarisation

Grundtypen

Elektronenpolarisation

Auslenkung von Atomkern und -hülle (induzierte Dipole)

Ionenpolarisation

Auslenkung von Kationen und Anionen (induzierte Dipole)

Orientierungspolarisation

Ausrichtung permanent vorhandener Dipole

Raumladungspolarisation

Ansammlung freier Ladungsträgern an isolierenden Korngrenzen

[Schaumburg 1994]

E = 0

www.iwe.kit.edu

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

Institut für

Kapitel 3, Folie: 2, 21.06.2013

3.2 Polarisationsmechanismen Elektronenpolarisation

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 3, 21.06.2013

3.2 Polarisationsmechanismen Elektronenpolarisation bei Gasen

Edelgase (1 bar, 20 °C)	$\chi_e\cdot 10^{\text{-5}}$	Molekülgase (1 bar, 20 °C)	$\chi_e \cdot 10^{-5}$
Helium (He) Neon (Ne) Argon (Ar) Krypton (Kr) Xenon (Xe)	6,88 13 55 77 124 [lvers-Tiffée 2007]	Wasserstoff (H_2) Sauerstoff (O_2) Stickstoff (N_2) Kohlendioxid (CO_2) Schwefelhexafluorid (SF_6)	26 52 58 98 205 [Münch 1987]

Die Polarisierbarkeit eines Einzelatoms ist nur von dessen Radius abhängig.

www.iwe.kit.edu

Kapitel 3, Folie: 4, 21.06.2013

3.2 Polarisationsmechanismen Ionenpolarisation

In einem Ionenkristall lenkt das elektrische Feld *E* Kationen (+Q) und Anionen (-Q) in entgegengesetzte Richtung aus. Im Gleichgewicht ist elektrische Kraft gleich Rückstellkraft (Ladungsverschiebung um d).

 $Q \cdot E = k \cdot d$

Konstante *k* abhängig von Kristallstruktur, Gitterabstand, Bindungsenergie, etc.

Induziertes Dipolmoment

$$p = \frac{Q}{2} \cdot (a + d - (a - d)) = \frac{Q^2}{k} \cdot E = \alpha_{ion} \cdot E$$

Ionische Suszeptibilität

$$\chi_{ion} \approx \frac{nQ^2}{\varepsilon_0 k}$$
 bzw. $\chi_{ion} \approx \sum_i \frac{n_i Q_i^2}{\varepsilon_0 k_i}$
(n_i : Dichte der Atom-/ Molekülsorte k

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 5, 21.06.2013

3.2 Polarisationsmechanismen Vergleich ionischer und elektronischer Polarisation

Alkali-Halogenide LiF LiCl LiBr (I/VII-Verbindungen) LiJ O(*d*_{ion}=2,1 2,6 2,7 3,0 Kation (positiv) NaF NaCl NaBr NaJ Anion (negativ) 0 0 0 2,3 2,8 3,2 2,9 $lpha_{el} \ lpha_{ion}$ Polarisierbarkeit KF **KCI** KBr KJ d_{ion} : Ionenabstand in 10⁻¹⁰ m 00 0 \mathbf{O} 2,7 3,1 3,3 3,5 RbF **RbCl** RbBr RbJ 2,8 3,3 3,5 [Ivers-Tiffée 2007]

www.iwe.kit.edu

Kapitel 3, Folie: 6, 21.06.2013

3.2 Polarisationsmechanismen Orientierungspolarisation

Bei polaren Dielektrika werden permanente Dipole im elektrischen Feld *E* ausgerichtet.

Dipolmoment in Feldrichtung

 $p_i = p_0 \cdot \cos \Theta_i$ (p_0 : molekularer Dipol)

Polarisation

 Θ_{4}

$$P = \frac{1}{V} \sum_{i=1}^{N} p_i$$
 (N: Anzahl der Dipole)

Mittlere Polarisierbarkeit $\alpha_{or} \approx \frac{p_0^2}{3kT}$ Herfolg

Suszeptibilität

$$\chi_{or} \approx \frac{n \cdot p_0^2}{3kT \cdot \varepsilon_0}$$

(n: Dichte der Dipole)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 7, 21.06.2013

3.2 Polarisationsmechanismen Raumladungspolarisation

Raumladungspolarisation tritt in polykristallinen oder Verbundwerkstoffen (Komposite) auf. Voraussetzung sind leitfähige Körner und (dünne) isolierende Korngrenzen.

Bsp. BaTiO₃

Kapazität
$$C = \varepsilon_r \cdot \varepsilon_0 \cdot \frac{A}{d}$$

Mikrokondensatoren: Große Fläche A, dünnes Dielektrikum d (in der Größenordnung der Korngrenzdicke)

Raumladungs-Polarisation ε_{eff} bis zu 10⁵ höchste Kapazitätswerte pro Volumen

[Hering 1994]

www.iwe.kit.edu

Kapitel 3, Folie: 11, 21.06.2013

Dielektrika: Temperaturabhängigkeit

www.iwe.kit.edu

Kapitel 3, Folie: 12, 21.06.2013

3.2 Polarisationsmechanismen Temperaturabhängigkeit der Polarisation (1)

Temperaturkoeffizient TK_eder Dielektrizitätszahl

$$TK_{\varepsilon} = \frac{1}{\varepsilon_r} \cdot \frac{d\varepsilon_r}{dT} = \frac{(\varepsilon_r - 1) \cdot (\varepsilon_r + 2)}{3\varepsilon_r} (TK_n + TK_{\alpha})$$

TK_n: Thermische Ausdehnung dielektrischer Werkstoffe Volumenausdehnungskoeffizient $\gamma = 1...6 \cdot 10^{-5} \text{ K}^{-1}$

 TK_{α} : Temperaturabhängigkeit der Polarisierbarkeit α :

$$TK_{\alpha_{el}} \cong 0$$
 $TK_{\alpha_{ion}} \cong 10^{-4} \dots 10^{-3} K^{-1}$ Für reine Elektronenpolarisation
negative Werte für TK_{ε} (-200...-20)Für starke lonenpolarisation meist
positive Werte für TK_{ε} (-100...1600)

Für (unpolare) Werkstoffe mit Elektronen- und Ionenpolarisation kann TK_{ε} >, = oder <0 sein.

www.iwe.kit.edu

Kapitel 3, Folie: 13, 21.06.2013

3.2 Polarisationsmechanismen Temperaturabhängigkeit der Polarisation (2)

Temperaturkoeffizient TK_a der Polarisierbarkeit a_{Or}

$$\alpha_{or} = \frac{p^2}{3kT} \sim \frac{1}{T} \qquad TK_{\alpha_{Or}} = \frac{1}{\alpha_{Or}} \cdot \frac{d\alpha_{Or}}{dT} = -\frac{1}{T}$$

Für Orientierungspolarisation meist große negative Werte für TK_{ε} .

Für polare Werkstoffe ($\alpha_{el} + \alpha_{ion} + \alpha_{Or}$) meist hohe negative TK_{ε} .

[Arlt 1989]

www.iwe.kit.edu

Kapitel 3, Folie: 14, 21.06.2013

3.2 Polarisationsmechanismen Polarisationsmechanismen im Überblick

Polarisations- mechanismus	Dipoltyp	Energie im Feld	Polarisier- barkeit α	Temperatur- abhängigkeit	Resonanz bzw. Relaxation
Elektronen- polarisation	induziert	$-\frac{1}{2}\vec{p}\vec{E}$	$4\pi\varepsilon_0 R^3$	$TK_{\alpha_e} \cong 0$	Resonanz im UV
lonen- polarisation	induziert	$-\frac{1}{2}\vec{p}\vec{E}$	$\frac{Q^2}{k}$	$TK_{lpha_{ion}}\cong 10^{-4}\cdot K^{-1}$	Resonanz im IR
Orientierungs- polarisation	permanent	− <i>p</i> Ē	$\frac{p^2}{3kT}$	$TK_{\alpha_{or}} = -T^{-1}$	Relaxation im MW

[Arlt 1989]

www.iwe.kit.edu

Kapitel 3, Folie: 15, 21.06.2013

3.2 Polarisationsmechanismen Dielektrizitätszahlen und TKs von Dielektrika in der Elektrotechnik

[Arlt 1989]

www.iwe.kit.edu

Kapitel 3, Folie: 16, 21.06.2013

Dielektrische Verluste

www.iwe.kit.edu

Kapitel 3, Folie: 17, 21.06.2013
3.3 Verhalten von Dielektrika im Wechselfeld Dielektrische Verluste im Kondensator (1)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 18, 21.06.2013

3.3 Verhalten von Dielektrika im Wechselfeld Dielektrische Verluste im Kondensator (2)

Relaxationsverluste durch örtlich gebundene Ladungsträger (Dipole) komplexe Dielektrizitätszahl $\underline{\varepsilon}_r(\omega) = \varepsilon'_r(\omega) - j\varepsilon''_r(\omega)$ Karlsruher Institut für Technologie

Ohmsche Verluste durch bewegliche Ladungsträger (Elektronen, Ionen)

elektrische Leitfähigkeit

 σ

$$i(t) = \frac{dD(t)}{dt} + \sigma \cdot E(t)$$

$$D = \underline{\varepsilon}_{r}(\omega) \cdot \varepsilon_{0} \cdot E \quad \text{mit} \quad E = E_{0} \cdot e^{j\omega t}$$

$$i = j\omega \cdot \varepsilon_{0} \cdot \underline{\varepsilon}_{r}(\omega) \cdot E_{0} \cdot e^{j\omega t} + \sigma \cdot E_{0} \cdot e^{j\omega t}$$

$$i = \omega \cdot \varepsilon_{0} \cdot \left(\varepsilon_{r}''(\omega) + \frac{\sigma}{\omega \varepsilon_{0}}\right) \cdot E_{0} \cdot e^{j\omega t} + j\omega \cdot \varepsilon_{0} \cdot \varepsilon_{r}'(\omega) \cdot E_{0} \cdot e^{j\omega t}$$

Verlustfaktor:
$$\tan \delta = \frac{|i_R|}{|i_C|} = \frac{\varepsilon_r''}{\varepsilon_r'} + \frac{\sigma}{\omega \varepsilon_0 \varepsilon_r'}$$
 für technische
Frequenzen < 10¹² Hz

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 19, 21.06.2013

3.3 Verhalten von Dielektrika im Wechselfeld Frequenzabhängigkeit der Elektronen-/Ionenpolarisation

Gleichung für Bewegung der Elektronenhülle im harmonischen Wechselfeld *E*

- $z \cdot m_e \cdot \ddot{x} + r \cdot \dot{x} + k \cdot x = z \cdot e_0 \cdot E(\omega t)$
- *z*·*m*_e : Masse der Elektronenhülle
- r: Reibungsbeiwert
- k: Coulomb-Kraftkonstante k =

$$\frac{(ze_0)^2}{4\pi\varepsilon_0 R^3}$$

0

längere Rechnung ergibt [...]

$$\chi'(\omega) = \frac{nze_0^2}{\varepsilon_0 m_e} \cdot \frac{\omega_0^2 - \omega^2}{\left(\omega_0^2 - \omega^2\right)^2 + \left(r\omega/zm_e\right)^2}$$
$$\chi''(\omega) = \frac{nze_0^2}{\varepsilon_0 m_e} \cdot \frac{\gamma\omega}{\left(\omega_0^2 - \omega^2\right)^2 + \left(r\omega/zm_e\right)^2}$$

Spektrales Verhalten in der Umgebung der Resonanzfrequenz ω_0

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 20, 21.06.2013

3.3 Verhalten von Dielektrika im Wechselfeld Frequenzabhängigkeit der Orientierungs-/ Raumladungspolarisation

Gleichung für die Polarisation im harmonischen Wechselfeld E

- $\tau_0 \cdot \dot{P} + P = \varepsilon_0 \cdot \Delta \chi' \cdot E(\omega t)$
- Relaxationszeit/Zeitkonstante τ₀: Ρ:
- Polarisation

längere Rechnung ergibt [...]

$$\chi'(\omega) = \frac{\Delta \chi'}{1 + \tau_0^2 \omega^2}$$
$$\chi''(\omega) = \frac{\Delta \chi' \cdot \omega \tau_0}{1 + \tau_0^2 \omega^2}$$

Spektrales Verhalten in der Umgebung der Relaxations frequenz ω_0

Institut für erkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée - Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 21, 21.06.2013

3.3 Verhalten von Dielektrika im Wechselfeld Vollständiges Dispersions- und Verlustspektrum

Relaxation Raumladungspolarisation Orientierungspolarisation

Resonanz

Ionenpolarisation Elektronenpolarisation

[Schaumburg 1994]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 22, 21.06.2013

3.3 Verhalten von Dielektrika im Wechselfeld Dielektrizitätszahlen und dielektrische Verlustfaktoren

	Dielektrizitätszahl ε_r	Verlustfaktor tan $\delta \cdot 10^3$	
Kunstharze Unpolare Kunststoffe Polare Kunststoffe	410 22,5 2,56	200500 < 0,5 120	Kunststoffe organische Werkstoffe
Technische Gläser Silikatkeramik NDK-Kondensatorkeramik HDK-Kondensatorkeramik	3,512 46,5 6200 20010 ⁴	0,510 120 < 0,6 220	Keramik / Glas anorganische Werkstoffe
NDK: Niedrige Dielektrizitätskon	stante / HDK: Hohe Diele	ektrizitätskonstante	[Münch 1993]

 $\varepsilon_r = f$ (T, f, E, mech. Kraft, Raumrichtung)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 23, 21.06.2013

Piezoelektrische Werkstoffe

www.iwe.kit.edu

Kapitel 3, Folie: 24, 21.06.2013

3.4 Piezoelektrische Werkstoffe Piezoelektrika, Pyroelektrika und Ferroelektrika

Spezielle Dielektrika Kristallklassen ohne Symmetriezentrum

Piezoelektrika Polarisation induziert durch mechanische Dehnung z.B. Quarz (SiO₂)

> **Pyroelektrika** spontane Polarisation (unabhängig vom elektrischen Feld) z.B. Turmalin

Ferroelektrika

spontane Polarisation (durch äußeres Feld beeinflussbar) Auftreten von Domänen

- z.B. Bariumtitanat (BaTiO₃)
- z.B. Bleizirkonat-Titanat (Pb(Ti,Zr)O₃)

www.iwe.kit.edu

Kapitel 3, Folie: 25, 21.06.2013

3.4 Piezoelektrische Werkstoffe Zur Ursache des piezoelektrischen Effekts

www.iwe.kit.edu

Kapitel 3, Folie: 26, 21.06.2013

3.4 Piezoelektrische Werkstoffe Piezoeffekt am Beispiel des Quarzkristalls (SiO₂)

www.iwe.kit.edu

Kapitel 3, Folie: 27, 21.06.2013

3.4 Piezoelektrische Werkstoffe Direkter und indirekter piezoelektrischer Effekt

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 28, 21.06.2013

3.4 Piezoelektrische Werkstoffe Piezoelektrische Gleichungen

(1)
$$\varepsilon_M = s^E \cdot \sigma_M + d \cdot E$$

$$(2) \quad D = d \cdot \sigma_M + \varepsilon_0 \cdot \varepsilon_r^T \cdot E$$

(3)
$$\varepsilon_M = s^D \cdot \sigma_M + g \cdot D$$

(4)
$$E = -g \cdot \sigma_M + \frac{D}{\varepsilon_0 \cdot \varepsilon_r^T}$$

 ε_M : mechanische Dehnung

- σ_M : mechanische Spannung [N/m²]
- s^{E} : Elastizitätsmodul bei konstantem E (E = 0 Kurzschluss)
- s^{D} : Elastizitätsmodul bei konstantem D (D = 0, Leerlauf)
- ε_r^T : Dielektrizitätszahl bei konstantem σ_M ($\sigma_M = 0$, ungeklemmt)
- d: piezoelektrische Ladungskonstante [m/V]
- g: piezoelektrische Spannungskonstante [Vm/N]

Piezoelektrischer Kopplungsfaktor k (eine Art Gütemaß)

$$K^{2} = \frac{\text{abgegebene mechanische Energie}}{\text{aufgenommene elektrische Energie}} = \frac{1}{s^{E}}$$

$$\frac{d^2}{\varepsilon_r^T \cdot \varepsilon_0} = \frac{g^2 \cdot \varepsilon_r^T \cdot \varepsilon_0}{s^E}$$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 29, 21.06.2013

3.4 Piezoelektrische Werkstoffe Anwendungen des piezoelektrischen Effekts

www.iwe.kit.edu

Kapitel 3, Folie: 30, 21.06.2013

3.4 Piezoelektrische Werkstoffe Weiterführende Veranstaltung

Sensorsysteme (Integrierte Sensor-Aktor-Systeme)

Sommersemester 2 SWS, Mittwoch 14:00 -15:30 Uhr W. Wersing (Siemens AG)

www.iwe.kit.edu

Kapitel 3, Folie: 31, 21.06.2013

Vorlesung 11

www.iwe.kit.edu

Kapitel 3, Folie: 1, 28.06.2013

Pyroelektrische Werkstoffe

www.iwe.kit.edu

Kapitel 3, Folie: 2, 28.06.2013

3.6 Pyroelektrische Werkstoffe Pyroelektrischer Effekt und Pyrokoeffizient

Phänomen

Bei gleichmäßiger Erwärmung eines Kristalls werden an dessen polaren Stirnflächen elektrische Ladungen influenziert.

Der Effekt ist zurückzuführen auf die Änderung der remanenten Polarisation P_r mit der Temperatur T.

Ab $T > T_C$ verschwindet der Effekt

Definition

Pyrokoeffizient
$$\pi_P = \frac{dP_r}{dT}$$
 $[\pi_P] = \text{As m}^{-2} \text{ K}^{-1}$

 P_r : remanente Polarisation T: Temperatur

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 3, 28.06.2013

3.6 Pyroelektrische Werkstoffe Anwendung: Pyroelektrischer Detektor/Infrarotdetektor

Potentiometrische Auswertung

I = 0, d.h. keine Änderung der Plattenladung/ Gesamtpolarisation.

$$\Delta U = \pi_P \cdot \frac{A \cdot \Delta T}{C}$$

Amperometrische Auswertung

U = 0, Stromimpuls/Stromintegration

$$\Delta \boldsymbol{Q} = \boldsymbol{\pi}_{\boldsymbol{P}} \cdot \boldsymbol{A} \cdot \Delta \boldsymbol{T}$$

A: Elektrodenfläche C: Kapazität

www.iwe.kit.edu

Kapitel 3, Folie: 4, 28.06.2013

3.6 Pyroelektrische Werkstoffe Low-Cost Pyroelektrischer Sensor (Bewegungsmelder)

[Siemens]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 5, 28.06.2013

Kondensatoren

www.iwe.kit.edu

Kapitel 3, Folie: 6, 28.06.2013

3.7 Kondensatoren Kondensatorfamilien im Überblick

Reale Kapazitäten (je nach Stoffklasse und Bauform) mit C = 1 pF...1 F

www.iwe.kit.edu

Kapitel 3, Folie: 7, 28.06.2013

3.7 Kondensatoren Auswahlkriterien für die Anwendung in Schaltungen

Auswahlkriterien

- Kapazität *C* (1 pF bis 1 F)
- Nennspannung (1,5 V ... > 1 kV)
- Betriebstemperatur (typisch -55 ... 125 °C)
- Verlustfaktor (typ. Angabe bei 25 °C, 1 kHz)
- Temperaturkoeffizient der Kapazität
- Bauform und Volumen

Detaillierte Charakterisierung

- Toleranz $C \pm \Delta C$
- Temperaturverlauf C(T)
- Frequenzverlauf C(ω)
- Spannungsabhängigkeit C(U)
- Leckstrom bei Gleichspannung (RC-Zeit)
- selbstheilende Eigenschaften
- Lebensdauererwartung

[Waser]

www.iwe.kit.edu

Kapitel 3, Folie: 8, 28.06.2013

3.7 Kondensatoren Folienkondensatoren im Überblick

[Hering 1994]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 9, 28.06.2013

3.7 Kondensatoren Selbstheilung bei Folienkondensatoren

MP- und MK-Folienkondensatoren

www.iwe.kit.edu

Kapitel 3, Folie: 10, 28.06.2013

3.7 Kondensatoren Temperatur- und Frequenzabhängigkeit bei Folienkondensatoren

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 11, 28.06.2013

3.7 Kondensatoren Realer Metall-Kunststoff-Folienkondensator (MKS)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 12, 28.06.2013

3.7 Kondensatoren Keramikkondensatoren im Überblick

	Typ 1 NDK	Typ 2 HDK	Typ 3 Sperrschicht	Vielschicht
	100	μm	~ 2 μm	20 50 um
Werkstoffe	Mischungen aus	Mischungen aus	ferroelektrische W.	Typ 1 oder
	paraelektrischen W.	ferroelektrischen W.	dotiertes BaTiO ₃	Тур 2
		auf BaTiO ₃ -Basis		
<i>E</i> _r	20 200	1000 16000	$\mathcal{E}_{eff} pprox 10^5$	wie Typ 1 bzw. 2
$tan\delta$	0,2 5·10 ⁻³	10 20·10 ⁻³	20 50·10 ⁻³	wie Typ 1 bzw. 2
С	1 pF 1 nF	0,2 22 nF	10 100 nF	10 pF10 nF (Typ 1)
				1 nF 1 μF (Typ 2)
Effekte	$\alpha_{el} + \alpha_{ion}$	$\alpha_{el} + \alpha_{ion} + \alpha_{or}$	$\alpha_{el} + \alpha_{ion} + \alpha_{or} + \alpha_{RL}$	$\alpha_{el} + \alpha_{ion} (+ \alpha_{or})$

NDK/ HDK: niedrige/hohe Dielektrizitätskonstante

www.iwe.kit.edu

Kapitel 3, Folie: 13, 28.06.2013

3.7 Kondensatoren Aufbau keramischer Ein- und Vielschichtkondensatoren

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 14, 28.06.2013

3.7 Kondensatoren Realer keramischer Einschichtkondensator (Typ 1 und 2)

www.iwe.kit.edu

Kapitel 3, Folie: 15, 28.06.2013

3.7 Kondensatoren Temperaturabhängigkeit von Keramikkondensatoren Typ 1

Werkstoffe mit einem definierten, linearen Temperaturkoeffizienten (positiv, negativ oder null)

 TK_{ε} von TiO₂ \approx -1000 ppm/K = N1000 TK_{ε} von Ba₂Ti₉O₂₀ \approx 0 ppm/K = NP0 (COG)* TK_{ε} von MgTiO₃ \approx +100 ppm/K = P100 * EIA-Standard [Schaumburg 1994]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 16, 28.06.2013

3.7 Kondensatoren Temperaturabhängigkeit von Keramikkondensatoren Typ 2

ε_r in Mischkristallen

Verschiebung von ε_{max} durch Bildung von Mischkristallen z.B. Ba $(Ti_{1-y}Zr_y)O_3$

 ε_r in Mischungen Geringere Temperaturabhängigkeit von ε_r durch Mischungen verschiedener Werkstoffe

www.iwe.kit.edu

Kapitel 3, Folie: 17, 28.06.2013

3.7 Kondensatoren Realer keramischer Vielschichtkondensator

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 18, 28.06.2013

3.7 Kondensatoren Aufbau keramischer Sperrschichtkondensatoren

Werkstoff: dotiertes BaTiO₃ Ausbildung von Miniatur-Kondensatoren durch leitfähige Körner (n-leitend, z.B. mit Sb³⁺-Dotierung) und isolierende Sperrschichten (Korngrenzen) (p-leitend, z.B. mit Cu²⁺ oder Fe³⁺-Dotierung)

Dicke des Dielektrikums entspricht der Dicke der isolierenden Korngrenzen.

Raumladungs-Polarisation \mathcal{E}_{eff} bis zu 10⁵ höchste Kapazitätswerte pro Volumen

[Hering 1994]

www.iwe.kit.edu

Kapitel 3, Folie: 19, 28.06.2013

3.7 Kondensatoren Motivation von Niob als neues Basismaterial für Elektrolytkondensatoren

Höhere Dielektrizitätszahl

	Nb_2O_5	Ta ₂ O ₅
E _r	28	22

- Ähnliche chem. Eigenschaften
- Größere Verfügbarkeit von Niob
 - ⇒ niedrigere Rohmaterialpreise
- [V. Fischer, IWE, EPCOS]

⇒ Niob-Elkos als neue hochkapazitive SMD-Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 20, 28.06.2013

3.7 Kondensatoren Herstellung von Niob-Elektrolytkondensatoren (1)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 21, 28.06.2013

3.7 Kondensatoren Herstellung von Niob-Elektrolytkondensatoren (2)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 22, 28.06.2013
3.7 Kondensatoren Elektrochemische Oxidation von Niob zu Niobpentoxid (1)

 I_F U_{F} \oplus Kathode Anode $H_2O + H_3PO_4$ poröse Nb-Anode

Kathode Anode Ő 5 H₂ 10 e⁻ 2 Nb⁵⁺ 10 e⁻ 10 OH- 🦾 10 OH- 🔨 🗍 2 Nb 10 H₂O Nb_2O_5 5 H₂O $H_2O + H_3PO_4$ Nb amorphes Nb_2O_5 [V. Fischer, IWE]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 23, 28.06.2013

Supraleiter

www.iwe.kit.edu

Kapitel 3, Folie: 24, 28.06.2013

2.6 Supraleiter Heike Kammerlingh-Onnes

Heike Kammerlingh-Onnes *1853 † 1926 Physiknobelpreis 1913 Heike Kammerlingh-Onnes gelang 1908 die Verflüssigung von Helium. Dabei entdeckte er, dass der elektrische Widerstand von Quecksilber bei 4,2 K nicht mehr messbar war.

Diese **Supraleitung** wurde seitdem bei vielen Metallen, Legierungen und Halbleitern festgestellt.

[H. Kamerlingh-Onnes, Proceedings of the Section of Sciences, volume XII (1911), pp. 1107-1113]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 25, 28.06.2013

2.6 Supraleiter Supraleitende Elemente im Periodensystem

 T_C : Sprungtemperatur (unterhalb derer das Material supraleitend ist)

[von Münch 1985 / 1987]

www.iwe.kit.edu

Kapitel 3, Folie: 26, 28.06.2013

2.6 Supraleiter Meißner-Ochsenfeld-Effekt

Meißner-Ochsenfeld-Effekt (1933)

 $T > T_C$

 $T < T_C$

Befindet sich ein Material im supraleitenden Zustand, fließen in der dünnen Oberflächenschicht des Supraleiters sehr große Oberflächenströme, sog. Supraströme, die ein äußeres Magnetfeld abschirmen. Deshalb ist das Innere des Supraleiters stets feldfrei.

$$B_i = 0$$
$$\chi_m = -1$$

 ⇒ Ein Supraleiter ist ein idealer Diamagnet.

Der supraleitende Zustand wird oberhalb einer kritischen magnetischen Flussdichte B_C zerstört.

www.iwe.kit.edu

2.6 Supraleiter Kritische Flussdichte

Die Supraleitung hängt in guter Näherung von der Temperatur und dem magnetischen Fluss ab:

$$B_{C} = B_{0} \cdot \left(1 - \left(\frac{T}{T_{C}}\right)^{2}\right)$$

 B_0 : kritische Flussdichte für T = 0 K.

Für $B < B_C$ und $T < T_C$ befindet sich das Material im supraleitenden Zustand.

[Schaumburg 1993, Münch 1993]

www.iwe.kit.edu

Kapitel 3, Folie: 28, 28.06.2013

2.6 Supraleiter Supraleitung erster und zweiter Art

Für $B < B_C$ wird der äußere Magnetfluss komplett verdrängt.

Supraleiter zweiter Art Magnetisierung M supraleitend B_{C1} Mischzustand B_{C2} B

Für $B_{C1} < B < B_{C2}$ bilden sich normalleitende, magnetische Flussschläuche. Die Supraleitung bleibt bis B_{C2} erhalten.

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 29, 28.06.2013

2.6 Supraleiter Flussschläuche bei Supraleitern zweiter Art

Beim Supraleiter 2. Art dringt der magnetische Fluss in Form von Flussschläuchen in das Material ein. Diese Flussschläuche sind quantisiert.

Der Wert eines elementaren Flussquants beträgt:

$$\Phi_0 = \frac{h}{2e} = 2 \cdot 10^{-15} Vs$$

Für die theoretische Erklärung der Flussschläuche erhielt Abrikosov 2003 den Nobelpreis für Physik.

Das Material befindet sich im supraleitenden Zustand (oben). Es sind zylinderförmige magnetische Bereiche sichtbar, die etwa 50 Flussquanten umfassen. Wird der magnetische Fluss erhöht. bilden sich mäanderförmige magnetische Bereiche.

www.iwe.kit.edu

Kapitel 3, Folie: 30, 28.06.2013

2.6 Supraleiter Stromdurchflossener Supraleiter

Fließt durch den Supraleiter ein elektrischer Strom, so wird ein magnetisches Feld erzeugt.

 $I = \oint \vec{H} \cdot d\vec{s}$

Erreicht dieses Magnetfeld die kritische Flussdichte, bricht die Supraleitung zusammen. \Rightarrow Nur innerhalb der kritischen Größen T_C , B_{C2} und j_C ist Supraleitung möglich. Diese Größen sind voneinander abhängig.

www.iwe.kit.edu

Kapitel 3, Folie: 31, 28.06.2013

2.6 Supraleiter Pinning von Flussschläuchen

Wird ein Material der 2. Art als Stromleiter eingesetzt, verursacht der Strom ein Magnetfeld. Durch die Lorentzkraft kommen die Flussschläuche in Bewegung. Es entsteht Reibung und dadurch Wärme. Die Temperatur steigt über die Sprungtemperatur, so dass das Material seine Supraleitfähigkeit verliert.

 $\vec{F} \sim \vec{j} \times \vec{B}$

Um die Bewegung der Flussschläuche zu verhindert, werden sie fixiert (pinning). Diese Materialien sind die Supraleiter dritter Art. Als Pinning-Zentren wirken Versetzungen, Ausscheidungen und Korngrenzen. Inseln bestehend aus 75 Å Au / 200 Å Co / 75 Å Au (AFM-Aufnahme)

[Van Bael, et. al., Phys. Rev. B 1 (1999), 59, 22]

www.iwe.kit.edu

Kapitel 3, Folie: 32, 28.06.2013

2.6 Supraleiter BCS-Theorie (1)

Physikalische Deutung der Supraleitung

• BCS-Theorie (1957): J. Bardeen, L. Cooper, B. Schrieffer, Nobelpreis 1972

www.iwe.kit.edu

Kapitel 3, Folie: 33, 28.06.2013

2.6 Supraleiter BCS-Theorie (2)

BCS-Theorie: Entstehung von Cooper-Paaren

Ein Elektron verzerrt durch elektrische Wechselwirkungen das Ionengitter leicht (siehe Bild). Die etwas größere Konzentration positiver Ionen an dieser Stelle zieht ein weiteres Elektron an, das einen zum ersten exakt entgegen gesetzten Impuls und Drehimpuls (Spin) besitzt. Die beiden Elektronen nehmen einen gemeinsamen Energiezustand ein und bilden ein sog. Cooper-Paar.

Für jedes Cooper-Paar gilt: Gesamtimpuls gleich Null.

[Fasching 1994]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 34, 28.06.2013

2.6 Supraleiter Cooper-Paare

Ein Cooper-Paar kann nur dann mit dem Gitter in Wechselwirkung treten, wenn es aufgebrochen wird. Dazu ist die Bindungsenergie der Paarkorrelation notwendig. Cooper-Paare bewegen sich also verlustfrei durch das Gitter. $W_{\text{ges}} = W_1 + W_2 - 2 W_g$ W_1, W_2 : Energien der ungebundenen Elektronen W_a : Bindungsenergie pro Elektron

BCS-Theorie: 2 $W_g(0) = 3.5 kT_C$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 3, Folie: 35, 28.06.2013

2.6 Supraleiter Bose-Einstein-Statistik

Temperatureinfluss

- Bei höheren T wird die schwache WW des Cooper-Paares durch die thermische Bewegung des Gitters gestört.
- Bei Cooper-Paaren ist der Gesamtspin bzw. -impuls Null. Deshalb sind sie nicht dem Pauli-Prinzip unterworfen, so dass alle Cooper-Paare den tiefstmöglichen quantenmechanischen Energiezustand einnehmen können.
- Die Cooper-Paare unterliegen nicht der Fermi-Dirac Statistik, sondern der Bose-Einstein-Statistik wechselwirkungsfreier Teilchen und nehmen bei Null Kelvin alle den gleichen Energiezustand ein (Grafik).

[http://www.colorado.edu/physics/2000/bec/what_is_it.html]

www.iwe.kit.edu

Kapitel 3, Folie: 36, 28.06.2013

2.6 Supraleiter Hochtemperatursupraleiter (HTSC)

T_C > 50 K

Das Schweben des HTSC über dem Permanentmagneten ergibt sich aus der Abstoßung zwischen dem äußeren Magnetfeld des Permanentmagneten und dem Magnetfeld, das durch die induzierten Ströme innerhalb des Supraleiter hervorgerufen wird.

[DPG 2000, MPI für Festkörperforschung, Stuttgart]

www.iwe.kit.edu

Kapitel 3, Folie: 37, 28.06.2013

2.6 Supraleiter Yttrium-Barium-Kupferoxid (YBCO)

Struktur YBa₂Cu₃O₇

Entdeckung 1986 durch Bednarz und Müller (IBM)

Die supraleitenden Eigenschaften gehen auf die Kupferoxidschichten (CuO₂) zurück.

[DPG 2000, K.F. Renk, Universität Regensburg]

www.iwe.kit.edu

Kapitel 3, Folie: 38, 28.06.2013

2.6 Supraleiter Video: Supraleitende Magnetschwebebahn

www.iwe.kit.edu

Kapitel 3, Folie: 39, 28.06.2013

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

WWW.IWE.kit.edu Kapitel 3, Folie: 40, 28.06.2013

2.6 Supraleiter Übersicht der supraleitenden Werkstoffe

Supraleitende Werkstoffe

<u>Metalle</u>

weisen eine niedrige Sprungtemperatur auf und sind schon bei geringen magnetischen Flüssen normalleitend (Supraleiter 1. Art).

• <u>Keramiken</u>

Wesentlich günstigere Eigenschaften haben keramische Werkstoffe, die erstmals 1986 von Bednorz und Müller beschrieben wurden (Nobelpreis 1987). Die Sprungtemperatur dieser Hochtemperatur-Supraleiter (HTSC) ist so hoch, dass sie mit flüssigem Stickstoff (T=77K) gekühlt werden können. Flüssiger Stickstoff ist günstig und ungiftig.

Supraleiter	<i>T_c</i> / K	<i>В_{с2} /</i> Т	Supraleiter			
Hg	4,2	$B_0 = 0,0412$	1. Art			
NbTi	10,6	11,8	2. Art			
Nb ₃ Sn	18	20	2. Art			
YBa ₂ Cu ₃ O ₇	93	30 – 60	HTSC			
Bi ₂ Sr ₂ CaCu ₂ O ₈	85	30 – 60	HTSC			
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀	110	100 – 200	HTSC			
Te ₂ Ca ₂ Ba ₂ Cu ₃ O _x	135	100 – 200	HTSC			

[Schaumburg 1993, Internet]

2.6 Supraleiter Erzeugung starker Magnetfelder (Teilchenbeschleuniger, Kernfusion)

Plasmagefäß ASDEX Upgrade

[IPP - Kernfusion, 44, 15]

www.iwe.kit.edu

Kapitel 3, Folie: 41, 28.06.2013

2.6 Supraleiter The ITER TF Model Coil Conductor

40 mm ø in 1.5 mm steel conduit rated current: 70 kA/11.8 T/4,6 K, ~ 1028 strands, Nb₃Sn + 1/3 Cu

www.iwe.kit.edu

Kapitel 3, Folie: 42, 28.06.2013

Kapitel 4 Magnetische Werkstoffe und ihre Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 1, 05.07.2013

Kapitel 4 Magnetische Werkstoffe und ihre Bauelemente

- 4.1 Einführung
- 4.2 Grundlagen
- 4.3 Polarisationsmechanismen
- 4.4 Magnetische Hysterese
- 4.5 Verhalten von Magnetika im Wechselfeld
- 4.6 Bauelemente und Anwendungen

Kapitel 4, Folie: 2, 05.07.2013

4.1 Einführung Anwendung von magnetischen Werkstoffen in Bauelementen (1)

[www.fzk.de/anka]

Speicher

[www.walenz.org]

www.iwe.kit.edu

Kapitel 4, Folie: 3, 05.07.2013

4.2 Grundlagen Magnetisches Verhalten von Werkstoffen

Feldstärke H und Flussdichte B

Die magnetische Feldstärke *H* wird durch einen elektrischen Strom *I* erzeugt. Die magnetische Flussdichte *B* ist über die Kraftwirkung auf eine bewegte Ladung definiert (nach Lorentz).

Definition: relative Permeabilitätszahl

In linearer, isotroper Materie ist die angelegte magnetische Feldstärke *H* proportional zur magnetischen Flussdichte *B*.

$$\vec{B} = \mu_0 \cdot \mu_r \cdot \vec{H}$$

 μ_r : relative Permeabilitätszahl (des Werkstoffs) μ_0 : magnetische Feldkonstante (des Vakuums)

Die physikalische Deutung dieser Beziehung, die Behandlung nichtlinearer Materie sowie die Querempfindlichkeit der Permeabilitätszahl zu anderen physikalischen Größen (z.B. Temperatur) und die Anwendung in Bauelementen ist Gegenstand des folgenden Kapitels.

www.iwe.kit.edu

Kapitel 4, Folie: 4, 05.07.2013

4.2 Grundlagen Magnetisierung von Materie

B₀ : magnetische Vakuumflussdichte

Flussdichte in Materie

- *J* : magnetische Polarisation
- M : Magnetisierung

$$\vec{B}_0 = \mu_0 \cdot \vec{H}$$

magnetische Feldkonstante $\mu_0 = 4 \pi \cdot 10^{-7} \text{ Vs/Am}$

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

...)

Kapitel 4, Folie: 5, 05.07.2013

4.2 Grundlagen Permeabilitätszahl und Suszeptibilität in linearer Materie

Flussdichte in Materie (allg.)

 $B = \mu_0 \cdot H + J = \mu_0 \cdot (H + M)$

In linearer Materie sind Feldstärke und Polarisation (Magnetisierung) proportional:

 $J = \mu_0 \cdot \chi_m \cdot H \quad (M = \chi_m \cdot H)$ χ_m : magnetische Suszeptibilität

Daher gilt $B = \mu_0 \cdot (1 + \chi_m) \cdot H$

Definition: relative Permeabilitätszahl

 $\mu_r = \mathbf{1} + \chi_m$

 $\vec{B} = \mu_0 \cdot \mu_r \cdot \vec{H}$ in linearer Materie

William Thomson, Lord Kelvin * 1824 † 1907

William Thomson führt 1850 die magnetische Permeabilität und Suszeptibilität ein.

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 6, 05.07.2013

4.2 Grundlagen Analogien zwischen Magnetika und Dielektrika (1)

Magnetika

Magnetische Feldstärke *H* [A/m] Magnetische Flussdichte/Induktion *B* [Vs/m²] Magnetische Polarisation *J* [Vs/m²] Magnetisierung *M* [A/m]

 $B = \mu_0 \cdot H + J = \mu_0 \cdot (H + M)$

In linearer Materie

$$B = \mu_0 \cdot \mu_r \cdot H$$
$$J = \mu_0 \cdot \chi_m \cdot H$$
$$M = \chi_m \cdot H$$
$$\mu_r = 1 + \chi_m$$

Dielektrika

Elektrische Feldstärke *E* [V/m] Dielektrische Verschiebungsdichte *D* [As/m²] Dielektrische Polarisation *P* [As/m²] (-)

 $D = \varepsilon_0 \cdot E + P$

In linearer Materie $D = \varepsilon_0 \cdot \varepsilon_r \cdot E$ $P = \varepsilon_0 \cdot \chi_e \cdot E$ (-) $\varepsilon_r = 1 + \chi_e$

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 7, 05.07.2013

4.2 Grundlagen Analogien zwischen Magnetika und Dielektrika (2)

[Arlt 1989]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 8, 05.07.2013

4.3 Polarisationsmechanismen Magnetische Momente der Atome (1)

- L : Bahndrehimpuls der Elektronen
- I : Drehimpulsquantenzahl (ganze Zahl, vgl. Kap. 1.1)
- μ_L : magnetisches Moment der Bahndrehung
- : atomarer Kreisstrom
- A : Fläche der Kreisbahn

erkstoffe der Elektrotechnik

 \hbar : Plancksches Wirkungsquantum

Quantisierter Bahndrehimpuls

$$L = I \cdot \hbar = m_e \cdot \omega \cdot r^2$$
$$\rightarrow \omega = I \cdot \frac{\hbar}{m_e \cdot r^2}$$

Atomarer Kreisstrom

$$i = \frac{q}{t} = \frac{e_0 \cdot v}{2\pi \cdot r} = \frac{e_0 \cdot \omega}{2\pi}$$

Magnetisches Bahnmoment

$$\mu_L = \frac{e_0 \omega}{2\pi} \cdot \pi r^2 = I \cdot \frac{e_0 \hbar}{2m_e} \equiv I \cdot \mu_B$$

$$\mu_B : \text{Bohrsches Magneton}$$

www.iwe.kit.edu

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

nstitut für

Kapitel 4, Folie: 9, 05.07.2013

4.3 Polarisationsmechanismen Magnetische Momente der Atome (2)

S

Bohrsches Magneton

Elementarquantum magnetischer Momente, d.h. das Bahnmoment tritt in Vielfachen des Bohrschen Magnetons μ_B auf.

$$\mu_B = \frac{e_0 \cdot h}{4\pi \cdot m_e}$$

Zahlenwert: $\mu_B = 9,27 \cdot 10^{-24} \text{ Am}^2$

 $\mu_{\rm S}$: magnetisches Moment der Eigendrehung

Für das magnetische Moment ergibt sich:

$$\mu_S = 2\mu_B \cdot s = \pm \mu_B$$

institut für erkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée - Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 10, 05.07.2013

4.3 Polarisationsmechanismen Überblick

Schwache Formen

Diamagnetismus

Induzierung atomarer magnetischer Momente entgegen der Richtung des äußeren Magnetfelds

Paramagnetismus

Ausrichtung permanent vorhandener atomarer magnetischer Momente in Richtung des äußeren Magnetfelds

Starke Formen

Ferromagnetismus

Spontane Parallelstellung aller magnetischen Momente in einer Domäne des Kristallgitters (nur bei metallischen Leitern)

Antiferromagnetismus Vollständige Kompensation aller magnetischen Momente durch Antiparallelstellung

Ferrimagnetismus

Spontane Orientierung der magnetischen Momente in einer Domäne durch Parallelstellung überwiegend in einer Richtung

www.iwe.kit.edu

Kapitel 4, Folie: 11, 05.07.2013

4.3 Polarisationsmechanismen Einteilung der magnetischen Stoffklassen (1)

 $\mu_r < 1$, $\chi_m < 0$

Diamagnetismus

linear (d.h. unabhängig von *H*) praktisch temperaturunabhängig Wirkung: sehr schwach* $\mu_r = 1$, $\chi_m = 0$

magnetisch neutrale Stoffe

idealisierter Grenzfall

 $\mu_r > 1$, $\chi_m > 0$

Para- und Antiferromagnetismus

praktisch linear (beachte Sättigung) temperaturabhängig Wirkung: schwach/mäßig $\mu_r \gg 1$, $\chi_m > 0$

Ferro- und Ferrimagnetismus

nichtlinear und Hysterese temperaturabhängig

Wirkung: stark

* Ausnahme Supraleiter, die mit $\chi_m = -1$ ideale Diamagnete sind

www.iwe.kit.edu

Kapitel 4, Folie: 12, 05.07.2013

4.2 Grundlagen Einteilung der magnetischen Stoffklassen (2)

Magnetische Suszeptibilität χ_m der Elemente																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
(H (-2,5)		alle Angaben gelten für 300 K, bei													He (-1,1)		
	Li 24	Be -23	(in T) angegeben B C N O F -19 -22 (-6,3) 7,9 (-4)											Ne (-4,0)				
	Na 8,1	Mg 5,7	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												Ar (-11)			
	К 5,7	Ca 21	Sc 264	Ti 181	V 383	Cr 267	Mn 828	Fe 2,16	Co 1,76	Ni 0,61	Cu -9,7	Zn -12	Ga -23	Ge -7,3	As -5,4	Se -18	Br -16	Kr (-16)
	Rb 4,4	Sr 36	Y 122	Zr 109	Nb 236	Mo 119	Tc 373	Ru 66	Rh 170	Pd 783	Ag -25	Cd -19	In -8,2	Sn 2,4	Sb -67	Te -24	I -22	Xe (-24)
	Cs 5,3	Ba 6,7	La 63	Hf 71	Ta 175	W 78	Re 96	Os 15	Ir 37	Pt 264	Au -34	Hg -28	T1 -36	Pb -16	Bi -153	Ро	At	Rn
-		diamagnetisch				paramagnetisch ferromagnetisch					Zahlen ohne (): $\cdot 10^{-6}$ Zahlen in (): $\cdot 10^{-9}$							

[Münch 1987]

www.iwe.kit.edu

Kapitel 4, Folie: 13, 05.07.2013

4.3 Polarisationsmechanismen Diamagnetismus (1)

Voraussetzungen:

Magnetisches Moment:

Richtung der Momente (H = 0):

Permeabilität/Suszeptibilität:

Wirkung auf den Feldlinienverlauf in einem homogenen Feld: (schematisch)

Werkstoffe:

Atome mit abgeschlossenen Orbitalen

Ohne äußeres Feld kein magnetisches Moment Kompensation der Spinmomente

 $\mu_r < 1$, $\chi_m < 0$ (sehr schwach ausgeprägt)

Edelgase, Ionenkristalle, Halbleiter, Cu, Au, Ag

[Hahn 1983]

www.iwe.kit.edu

Kapitel 4, Folie: 14, 05.07.2013

4.3 Polarisationsmechanismen Diamagnetismus (2)

$$\overline{\mu}_{ind} = -\frac{e_0^2 \cdot r^2}{6m_e}B \qquad \qquad \chi_m = -\mu_0 \cdot N \cdot \frac{e_0^2 \cdot r^2}{6m_e}$$

- $|\chi_m| \cong 10^{-5} ... 10^{-6} \to \mu_r \approx 1$
- χ_m praktisch temperaturunabhängig

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 15, 05.07.2013

4.3 Polarisationsmechanismen Paramagnetismus (1)

Voraussetzungen:

Magnetisches Moment:

Richtung der Momente (H = 0):

Permeabilität/Suszeptibilität:

Wirkung auf den Feldlinienverlauf in einem homogenen Feld: (schematisch)

Werkstoffe:

Atome mit unabgeschlossenen Orbitalen

Moment klein, auch ohne äußeres Feld vorhanden Regellose Verteilung der Momentrichtungen

 $\mu_r > 1$, $\chi_m > 0$ (schwach ausgeprägt)

Alkali- und Übergangsmetalle, Seltene Erden O₂, Al, Sn, Pt

[Hahn 1983]

www.iwe.kit.edu

Kapitel 4, Folie: 16, 05.07.2013
4.3 Polarisationsmechanismen Paramagnetismus (2)

Ansatz wie in Kap. 3.2

$$M = \frac{1}{V} \sum_{i} \mu_{M_{i}} = N \mu_{B} \cdot L\left(\frac{\mu_{B}B}{kT}\right) \rightarrow \chi_{m} = \frac{\mu_{0} N \mu_{B}^{2}}{3kT}$$

- $|\chi_{\rm m}| \cong 10^{-3}...10^{-6} \to \mu_{\rm r} \approx 1$
- Temperaturabhängigkeit: χ_m = C / T (Curie-Gesetz)
- k: Boltzmann-Konstante

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 17, 05.07.2013

4.3 Polarisationsmechanismen Magnetisierungskurven in Dia- und Paramagnetika

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 18, 05.07.2013

4.3 Polarisationsmechanismen Magnetische Ordnungszustände (1)

Ausrichtung der magnetischen Elektronenspins in den 3d-Zuständen nach der Hundschen Regel.

Sc 21 ↑	Ti 22 ↑↑	V 23 ↑↑↑	Cr 24 ↑↑↑↑	
Mn,Mn²+ 25 ↑↑↑↑↑	Fe,Fe ²⁺ 26 ↑↑↑↑↑ ↓	Co,Co ²⁺ 27 ↑↑↑↑↑ ↓↓	Ni,Ni²+ 28 ↑↑↑↑↑ ↓↓↓	
Cr ³⁺ 24 ↑↑↑	Mn ⁴⁺ 25 ↑↑↑	Fe ³⁺ 26 ↑↑↑↑↑	atomares magnetisches Moment: $\uparrow = \mu_B$ Bohrsches Magneton	

Bei den Atomen bzw. Ionen der 3d-Schale treten resultierende magnetische Momente bis zu einem Wert von $5\mu_B$ auf.

Unter "geeigneten" Bedingungen (siehe Bethe-Slater-Diagramm) führt die Wechselwirkung der Nettomomente benachbarter Atome bzw. Ionen zu einem räumlich ausgedehnten Ordnungszustand (Parallel- oder Antiparallelstellung der resultierenden Momente). Bei paralleler Ausrichtung der Momente ist die Wirkung des Magnetismus sehr stark ausgeprägt.

Räumliche Bereiche gleichartiger Ordnungszustände nennt man **Domänen** oder **Weißsche Bezirke**.

www.iwe.kit.edu

Kapitel 4, Folie: 19, 05.07.2013

4.3 Polarisationsmechanismen Magnetische Ordnungszustände (2)

Die magnetischen Ordnungszustände innerhalb einer Domäne werden in drei Klassen unterteilt (Ferro-, Ferri- und Antiferromagnetismus).

Beim Überschreiten einer bestimmten Temperatur werden die magnetischen Ordnungszustände und damit die Magnetisierung zerstört. Jenseits davon verhalten sich die Substanzen paramagnetisch.

 T_C : Curie-Temperatur

 T_N : Néel-Temperatur

4.3 Polarisationsmechanismen Bethe-Slater-Diagramm

- W_W : Austauschwechselwirkungsenergie
- a_A . Atomabstand im Metall
- r_{3d} Radius der 3d-Schale
- $W_W > 0$: Parallelstellung der magnetischen Momente
- $W_W < 0$: Antiparallelstellung der magnetischen Momente

[Münch 1987]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 21, 05.07.2013

4.3 Polarisationsmechanismen Ferromagnetismus (1)

Voraussetzungen:

Magnetisches Moment:

Richtung der Momente:

Permeabilität:

Wirkung auf den Feldlinienverlauf in einem homogenen Feld: (schematisch)

Werkstoffe:

Atome mit unabgeschlossenen Orbitalen

Moment groß, spontane Magnetisierung Weißsche Bezirke, Elementarmagnete

 $\mu_r >> 1$, $\chi_m > 0$ (stärkste Form des Magnetismus)

Fe, Co, Ni, Legierungen

[Hahn 1983]

www.iwe.kit.edu

Kapitel 4, Folie: 22, 05.07.2013

4.3 Polarisationsmechanismen Ferromagnetismus (2)

Temperaturabhängigkeit der Sättigungsmagnetisierung M_s bzw. der Sättigungspolarisation J_s

Eigenschaften der Elemente Fe, Co, Ni

	Eisen	Kobalt	Nickel
Ordnungszahl	26	27	28
Atomgewicht	55,8	58,9	58,7
Gitterstruktur	krz	hdp	kfz
Gitterkonstante a	2,86	2,50	3,52
Gitterkonstante c	-	4,06	-
spez. Gewicht / (g/cm ³)	7,9	8,8	8,9
Schmelzpunkt / °C	1536	1495	1453
Curie-Temperatur	770	1130	358
Sättigungsmagnetisierung / (10 ⁵ A/m)	17,3	14,4	5,1
spontane Magnetisierung (300 K) / (10 ⁵ A/m)	17,1	14,2	4,9
Sättigungspolarisation / T	2,18	1,81	0,64
spontane Polarisation (300 K) / T	2,16	1,78	0,61

Sättigungswerte der Magnetisierung M_{S0}

www.iwe.kit.edu

Kapitel 4, Folie: 23, 05.07.2013

4.3 Polarisationsmechanismen Antiferromagnetismus (1)

Voraussetzungen:

Magnetisches Moment:

Richtung der Momente:

Permeabilität:

Wirkung auf den Feldlinienverlauf in einem homogenen Feld: (schematisch)

Werkstoffe:

unabgeschlossene Orbitale, sehr geringer Atomabstand

in jedem Atom wird die Magnetisierung vollständig kompensiert

 $\mu_r \approx 1$, $\chi_m \approx 0$ (schwache Ausprägung)

MnO, FeO, CoO, NiO und andere Oxidverbindungen

[Hahn 1983]

www.iwe.kit.edu

Kapitel 4, Folie: 24, 05.07.2013

4.3 Polarisationsmechanismen Antiferromagnetismus (2)

- Gitteraufbau und Spinorientierung bei Manganoxid (MnO)
- antiparallele Ausrichtung der Momente in Mn²⁺ durch nichtmagnetische O²⁻-Ionen

- Verteilung und Spinorientierung
 3d-Elektronen von Mn²⁺ und
 2p-Elektronen des O²⁻
- teilweise Überlappung von 3d- und 2p-Orbitalen bewirkt (Hundsche Regel) eine antiparallele Orientierung der magnetischen Momente

[Münch 1987]

www.iwe.kit.edu

Kapitel 4, Folie: 25, 05.07.2013

4.3 Polarisationsmechanismen Antiferromagnetismus (3)

• Temperaturabhängigkeit $T > T_N$

$$\chi_m = \frac{C}{T - \Theta}$$

(Curie-Weiß-Gesetz mit negativer Curietemperatur)

- Bei *T* < *T_N* erfolgt Antiparallelstellung der magnetischen Dipole
- Bei T > T_N wird diese durch thermische Einflüsse zerstört

[Callister 1994]

www.iwe.kit.edu

Kapitel 4, Folie: 26, 05.07.2013

4.3 Polarisationsmechanismen Ferrimagnetismus (1)

Voraussetzungen:

Magnetisches Moment:

Richtung der Momente:

Atome mit unabgeschlossenen Orbitalen Gitterstruktur

Moment durch nicht vollständige Kompensation vorhanden

Permeabilität:

Wirkung auf den Feldlinienverlauf in einem homogenen Feld: (schematisch)

Werkstoffe:

 $\mu_r >> 1$, $\chi_m > 0$ (stark ausgeprägt, kleiner als Ferrom.)

sog. Ferrite: Spinelle (AB₂O₄)

[Hahn 1983]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 27, 05.07.2013

4.3 Polarisationsmechanismen Ferrimagnetismus (2)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 28, 05.07.2013

4.3 Polarisationsmechanismen Ferrimagnetismus (3)

zur Spinorientierung der Oktaederplätze

Beispiel: Manganferrit MnO·Fe₂O₃ $Mn_8^{2+} [Fe_{16}^{3+}]O_{32}^{2-} -8\cdot5\mu_B + 16\cdot5\mu_B = 40\mu_B$ Z $J_S = \mu_0 \cdot \frac{Z \cdot \mu_B}{a^3}$ $Moment entspricht theoretischer Sättigungspolarisation J_S$ a: Gitterkonstante [Münch 1987]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 29, 05.07.2013

4.3 Polarisationsmechanismen Ferrimagnetismus (4)

[Callister 1994 / Arlt 1989]

www.iwe.kit.edu

Kapitel 4, Folie: 30, 05.07.2013

4.4 Magnetische Hysterese Ausbildung von Domänen bei Ferro- und Ferrimagnetika

räumliche Ausbildung der Domänen minimiert Gesamtenergie des Systems.

Bloch-Wand: Grenzflächen der Weißschen Bezirke

Domänen mit 180° Bloch-Wand

Umkehrung der Magnetisierungsrichtung in der Bloch-Wand ist über eine Reihe von Dipolen verteilt.

 $d_{BW}(Co) \approx 60 \text{ nm}$ (ca. 250 Atomlagen)

[Münch 1987]

www.iwe.kit.edu

Kapitel 4, Folie: 31, 05.07.2013

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

4.4 Magnetische Hysterese Domänenwachstum bei ansteigender magnetischer Feldstärke (1)

www.iwe.kit.edu

Kapitel 4, Folie: 32, 05.07.2013

4.4 Magnetische Hysterese Domänenwachstum bei ansteigender magnetischer Feldstärke (2)

Reversible und irreversible Verschiebungen einer Bloch-Wand

Fehlstellen (Verunreinigungen, Leerstellen, Korngrenzen, Versetzungen, etc.) beeinflussen die magnetischen Eigenschaften eines Werkstoffs maßgeblich.

www.iwe.kit.edu

Kapitel 4, Folie: 33, 05.07.2013

4.4 Magnetische Hysterese Magnetisierungskurven bei Ferro- und Ferrimagnetika (1)

[Münch 1993 / Callister 1994]

www.iwe.kit.edu

Kapitel 4, Folie: 34, 05.07.2013

4.4 Magnetische Hysterese Magnetisierungskurven bei Ferro- und Ferrimagnetika (2)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 35, 05.07.2013

4.4 Magnetische Hysterese Weich- und hartmagnetische Werkstoffe (1)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 36, 05.07.2013

4.4 Magnetische Hysterese Weich- und hartmagnetische Werkstoffe (2)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 37, 05.07.2013

4.4 Magnetische Hysterese Weich- und hartmagnetische Werkstoffe (3)

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 38, 05.07.2013

4.4 Magnetische Hysterese Weich- und hartmagnetische Werkstoffe (3)

SmCo₅ hexagonales Gitter 0 0 ° Co Sm 0 0 а 0

eine Vorzugsmagnetisierungsrichtung in Richtung der c-Achse

www.iwe.kit.edu

Kapitel 4, Folie: 39, 05.07.2013

4.4 Magnetische Hysterese Typisierung technischer Hystereseschleifen

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 40, 05.07.2013

4.4 Magnetische Hysterese Technische Permeabilitätszahlen (1)

[Münch 1987]

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 41, 05.07.2013

4.4 Magnetische Hysterese Technische Permeabilitätszahlen (2)

Typische ferro-/ferrimagnetische Werkstoffe

Werkstoff	Zusammensetzung in Gew.% (Rest Fe)	<i>B</i> _r [T]	<i>H_C</i> [A/m]	μ _{ra}	$\hat{\mu}_{r,\max}$
Dynamoblech Trafoblech Permalloy Mumetall	2Si 4Si 78Ni, 3Mo 76Ni, 5Cu, 2Cr	0,6 0,4	60 40 1 2	500 300 10 ⁴ 3·10 ⁴	6000 7000 8.10 ⁴ 10 ⁵

[Münch 1987]

www.iwe.kit.edu

Kapitel 4, Folie: 42, 05.07.2013

4.4 Magnetische Hysterese Übersicht ferro- und ferrimagnetischer Werkstoffklassen

www.iwe.kit.edu

Kapitel 4, Folie: 43, 05.07.2013

4.4 Magnetische Hysterese Abmagnetisierung der Werkstoffe

Temperaturbehandlung

Wiederherstellung des unmagnetisierten Zustands durch Erwärmen des Werkstoffs über T_C

[Arlt 1989]

www.iwe.kit.edu

Kapitel 4, Folie: 44, 05.07.2013

4.5 Verhalten von Magnetika im Wechselfeld Verlustfaktor und komplexe Permeabilitätszahl

www.iwe.kit.edu

Kapitel 4, Folie: 45, 05.07.2013

4.5 Verhalten von Magnetika im Wechselfeld Ortskurve und Ersatzschaltbild einer realen Spule

 R_V : Leitungs-, Hysterese-, Wirbelstromverluste C_W : Wicklungskapazität

Ersatzschaltbild einer realen Spule

kleine Kapazität C_W (technischer Fall)

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 46, 05.07.2013

4.5 Verhalten von Magnetika im Wechselfeld Verluste durch Hysterese (Ummagnetisierung)

Bei der Ummagnetisierung ferro-/ferrimagnetischer Werkstoffe entstehen spezifische Wärmeverluste w_H [J/m³], welche dem Umlaufintegral auf der B(H)-Kennlinie entsprechen (eingeschlossene Fläche).

Energiedichte des Verlusts: $w_H = \oint H dB$

Bei Wechselstromerregung führt dies zu einem Verlust, der sog. Hystereseverlustleistung P_H .

 $P_H = V \cdot f \cdot \oint H dB$

Mit $\mu_0 \cdot H \ll J$ folgt: $P_H \approx V \cdot f \cdot \oint H dJ$

www.iwe.kit.edu

Kapitel 4, Folie: 47, 05.07.2013

4.5 Verhalten von Magnetika im Wechselfeld Verluste durch Wirbelströme

Eisenkern im Wechselmagnetfeld

Befindet sich ein elektrischer Leiter in einem Wechselmagnetfeld, z.B. in einer Spule oder einem Transformator, so werden in ihm sog. Wirbelströme induziert (gemäß Lenzscher Regel). Diese führen zu Erwärmung und damit zu Verlusten.

Wirbelstromverluste

Abhilfe in der Technik

Kern schichten aus dünnen, voneinander isolierten Eisenblechen. Zusätzlich Erhöhen des spezifischen Widerstands des Eisens durch Hinzulegieren von Silizium.

Kapitel 4, Folie: 48, 05.07.2013

4.6 Bauelemente und Anwendungen Einsatzgebiete magnetischer Werkstoffe

Anwendungen	Anforderungen	Werkstoffe
Transformatoren Motoren Generatoren	hohe Sättigungsmagnetisierung <i>J_s</i> geringe Koerzitivfeldstärke <i>H_C</i> geringe Leitfähigkeit	Fe + 0,74 Si Fe + 3550 Co
NF-Übertrager	Linearität der <i>B</i> (<i>H</i>)-Kennlinie geringe Leitfähigkeit	Fe + 36 Ni ca. 20 Fe + 40 Ni ca. 20 Fe + 40 Co
HF-Übertrager	Linearität der <i>B(H</i>)-Kennlinie sehr geringe Leitfähigkeit	Ni-Zn-Ferrite
Abschirmungen	sehr hohe Anfangspermeabilität μ_{ra}	Fe + 7679 Ni (+ Cu, Cr, Mo)
Digitale Informationsspeicher	rechteckige $B(H)$ -Kennlinie ($J_s \approx B_r$)	Fe + 50 Ni, Mg-Zn-Ferrite Granatschichten
Dauermagnete	Produkt <i>B·H</i> möglichst groß	50Fe+24Co+14Ni+9Al+3Cu BaO·6Fe ₂ O ₃ , Sm ₂ Co ₁₇ , NdFeB

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 49, 05.07.2013

4.6 Bauelemente und Anwendungen Transformatoren, Übertrager

www.iwe.kit.edu

Kapitel 4, Folie: 50, 05.07.2013

4.6 Bauelemente und Anwendungen Übertrager, Drosselspulen

Schalenkern für Übertrager

Drosseln mit Ferritkern

www.iwe.kit.edu

Kapitel 4, Folie: 51, 05.07.2013

4.6 Bauelemente und Anwendungen Magnetplatte als Speichermedium: horizontale Polarisation

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 52, 05.07.2013
4.6 Bauelemente und Anwendungen Magnetplatte als Speichermedium: vertikale Polarisation

Maximale Speicherdichte wird erhöht durch vertikale Polarisation.

[Spektrum]

Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 53, 05.07.2013

4.6 Bauelemente und Anwendungen Schreib/Lese-Kopf für Magnetplatten in Dünnschichttechnik

www.iwe.kit.edu

Kapitel 4, Folie: 54, 05.07.2013

4.6 Bauelemente und Anwendungen Technologieentwicklung von Magnetspeicherplatten

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

[IBM]

Kapitel 4, Folie: 55, 05.07.2013

4.6 Bauelemente und Anwendungen Permanentmagnete

Institut für Werkstoffe der Elektrotechnik Prof. Dr.-Ing. Ellen Ivers-Tiffée – Passive Bauelemente

www.iwe.kit.edu

Kapitel 4, Folie: 56, 05.07.2013