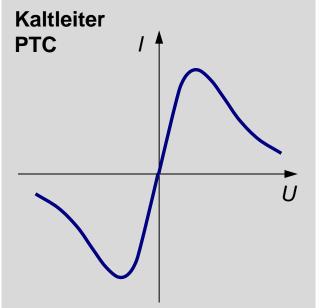
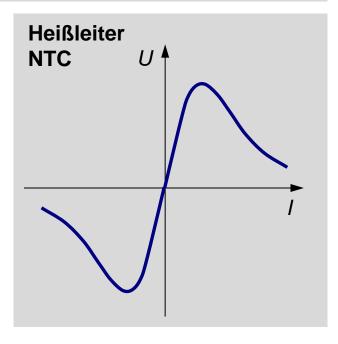

Vorlesung 7




2.3 Halbleitende Metalloxide Weiteres Anwendungsgebiet: Nichtlineare Widerstände

Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.

Korngrenzeffekte in Metalloxiden

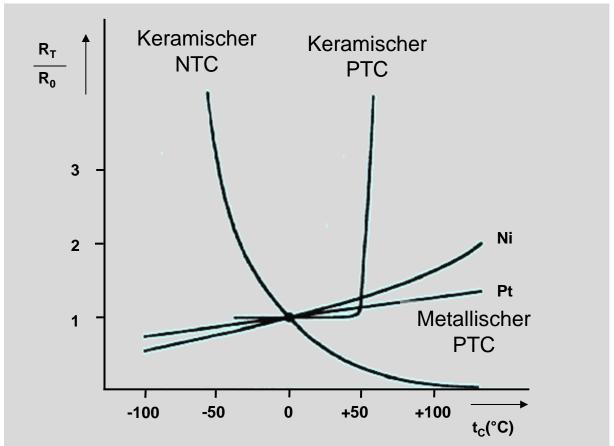
Widerstandsänderung durch Eigenerwärmung

2.3 Halbleitende Metalloxide Überblick nichtlineare Widerstände

Тур	Physikalischer Effekt	Werkstoff
Spannungsabhängiger Widerstand (Varistor)	Korngrenzphänomene in halbleitenden Metalloxiden	n-dotiertes ZnO
Kaltleiter (PTC)	Korngrenzphänomene in halbleitenden Ferroelektrika und Eigenerwärmung	n-dotiertes BaTiO ₃ $\sigma \approx 10^210^3$ S/m
Heißleiter (NTC)	Hoppingleitung in Metalloxiden und Eigenerwärmung	Spinelle, z.B. $(Ni,Mn)_3O_4$ $\sigma \approx 10^{-2}$ S/m

Begriffe

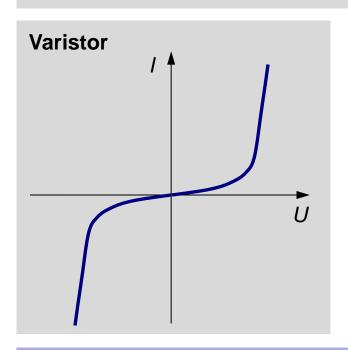
Thermistor: <u>thermally sensitive resistor</u>

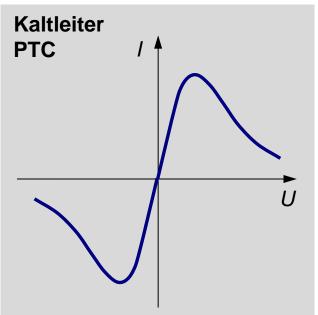

NTC: <u>n</u>egative <u>t</u>emperature <u>c</u>oefficient PTC: <u>p</u>ositive <u>t</u>emperature <u>c</u>oefficient

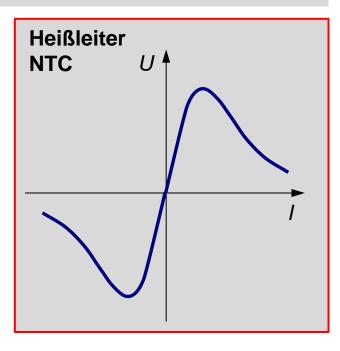
Varistor: <u>variable resistor</u>

[Schaumburg 1990]

2.3 Halbleitende Metalloxide Temperaturabhängige nichtlineare Widerstände: NTC und PTC




[Bonfig 1995]

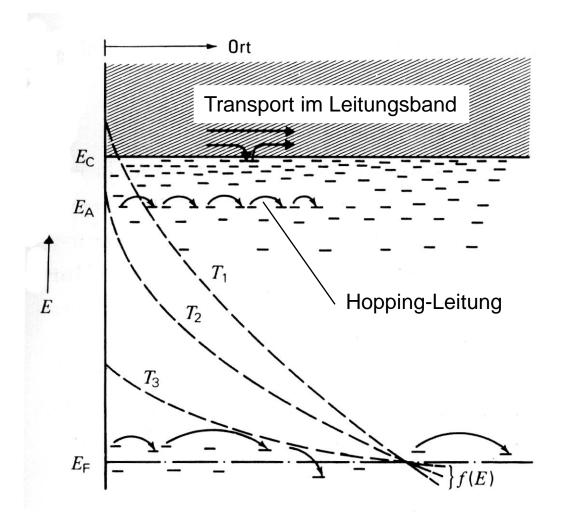

2.3 Halbleitende Metalloxide Weiteres Anwendungsgebiet: Nichtlineare Widerstände

Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.

Korngrenzeffekte in Metalloxiden

Widerstandsänderung durch Eigenerwärmung

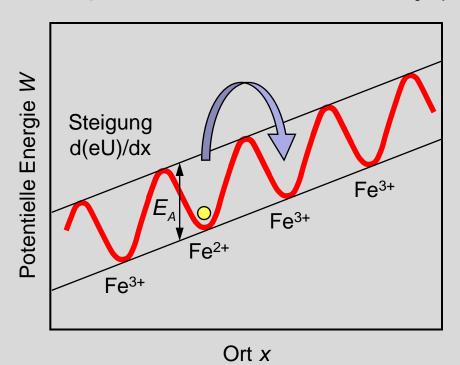
Physikalische Grundlagen des Heißleitereffekts

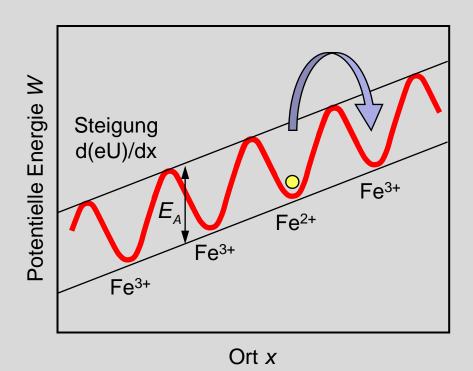

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Das Prinzip der elektronischen Hoppingleitung

Hoppingleitung

Reicht die thermische Energie der Ladungsträger nicht aus, um diese ins Leitungsband zu heben, so zeigt sich bei bestimmten Materialen trotzdem eine gewisse elektrische Leitfähigkeit – entgegen der Vorhersage des Bändermodells. Bei diesem Leitungsprozess, genannt Hoppingleitung, springen die Ladungsträger je nach räumlichem und energetischem Abstand der Haftstellen thermisch angeregt von einer Haftstelle zur anderen (Hopping).

[Heywang 1984]




2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung

Das Prinzip der elektronischen Hoppingleitung: Platzwechselvorgänge von Elektronen

Hopping von Elektronen am Beispiel Fe₃O₄

Beim Hopping muss die Energie E_A überwunden werden. Nehmen die Elektronen thermische Energie aus der Umgebung auf, so steigt die Wahrscheinlichkeit für den Platzwechsel.

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Oxidationszahlen bzw. Wertigkeiten der Elemente

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 1,008																	2 4,003
1	H																	Не
\mathbb{H}	(-1) 3 6,941	4 9,012	Ī										5 10,81	6 12,01	7 14,01	8 16,00	9 19,00	10 20,18
2	Li	Be											В	C	N	0	F	Ne
	1	<u>2</u>											<u>3</u>	<u>-4,4</u> (2)	<u>-3</u> (2,3,4,5)	<u>-2</u> (-1)	-1	
	11 22,99	12 24,31											13 26,98	14 28,09	15 30,97	16 32,06	17 35,45	18 39,95
3	Na	Mg											ΑI	Si	Р	S	CI	Ar
	1	<u>2</u>											<u>3</u> 3	<u>4</u> (-4)	<u>5</u> (-3,3)	<u>6</u> (-2,2,4)	<u>-1</u> (1,3,5,7)	
H	19 39,10	20 40,08	21 44,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,41	31 69,72	32 72,64	33 74,92	34 78,96	35 79,90	36 83,80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>3</u>	<u>2</u>	<u>3</u>	<u>2</u>	<u>2</u>	<u>2</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>3</u>	4	<u>-1</u>	(0)
H	37 85,47	38 87,62	39 88,91	3 40 91,22	(0,2,3,4) 41 92,91	(0,2,6) 42 95,94	(-1,0,3,4,6,7) 43 (98)	(-2,0,2,6) 44 101,1	(-1,0,3) 45 102,9	(0,3) 46 106,4	(1) 47 107,9	48 112,4	49 114,8	50 118,7	(-3,5) 51 121,8	(-2,6) 52 127,6	(1,3,5,7) 53 126,9	(2) 54 131,3
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>3,4</u>	<u>1,3</u>	<u>2</u>	, (9 <u>1</u>	<u>2</u>	<u>3</u>	<u>2,4</u>	<u>3</u>	<u>4</u>	<u>-1</u>	, AO
Ш	FF 400.0	50 407.0	57. 74	70 470 5	(3)	('0,2,3,4,5)	75 400 0	(-2,0,2,6,8)	(0,2,4,5)	(0,4)	(2)	22 222 2	04 004 4	00.007.0	(-3,5)	(-2,6)	(1,5,7)	(2,4,6)
	55 132,9	56 137,3	57 - 71	72 178,5 Hf	73 180,9 Ta	74 183,8 W	75 186,2	76 190,2	77 192,2	78 195,1	79 197,0	80 200,6	81 204,4 TI	82 207,2	83 209,0 Bi	84 (209)	85 (210) A 4	86 (222)
6	Cs	Ba	La-Lu	ПI 4	ıa 5	VV 6	Re	Os 4	Ir 1.4	Pt 2,4	Au <u>3</u>	Hg	1 1 1	Pb	D I	Ро	At <u>-1</u>	Rn
		4		H	v	(0,2,3,4,5)	(-1,2,4,6)	(-2,0,2,3,6,8)		(0)	<u>4</u> (1)	2 (1)	(3)	<u>=</u> (4)	(5)	(2,6)	(1,3,5,7)	(2)
	87 (223)	88 (226)	89 - 103															
7	Fr	Ra	Ac-Lr															
	1	<u>2</u>																
ш																		

	57 138,9	58 140,1	59 140,9	60 (145)	61 (145)	62 150,4	63 152,0	64 157,3	65 158,9	66 162,5	67 164,9	68 167,3	69 168,9	70 173,0	71 175,0
Lanthanoide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>											
		(4)	(4)			(2)	(2)		(4)				(2)	(2)	
	89 (227)	90 232,0	91 231,0	92 238,0	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
Actinoide	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>5</u>	<u>4</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>2</u>	<u>3</u>
			(4)	(3,4,5)	(3,4,6)	(3,5,6)	(4,5,6)	(4)	(4)	(4)				(3)	

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Valenzaustausch bei Elemente mit mehreren Wertigkeiten

Werkstoffe: Oxide der Metalle z.B. Mn, Fe, Co, Ni, Cu, Zn (Übergangsmetalle)

Bindungstyp: überwiegend oder teilweise heteropolare (Ionen-) Bindung

(Metalle: Kationen, Sauerstoff: Anion)

Halbleitende Eigenschaften entstehen durch Wertigkeitswechsel der Kationen im Oxid. Ladungstransport über Hopping-Mechanismus ("Durchreichen" der Wertigkeiten)

Elemente
Wertigkeiten

Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
	+2	+2	+2	+2	+2	+2	+2	+2
+3	+3	+3	+3	+3	+3	+3		
+4	+4	+4	+4	+4				
	+5							

Gitterstruktur: $A^{2+} B^{3+}_{2} O^{2-}_{4}$ (Spinell)

typischer Heißleiter: Ni²⁺ Mn³⁺₂ O²⁻₄

2.3 Halbleitende Metalloxide – Elektronische Hoppingleitung Beweglichkeit der Ladungsträger bei Hopping

Diffusionskonstante für Polaronen

$$D = (1 - c)a^2 v_0 \cdot \exp\left(-\frac{E_A}{kT}\right)$$

 E_{A} : Aktivierungsenergie

1-c: Anteil der unbesetzten Plätze

a: Sprungabstand

 v_0 : Schwingfrequenz (Debye-Frequenz)

Einstein-Beziehung: $\mu = \frac{q \cdot D}{k \cdot T}$

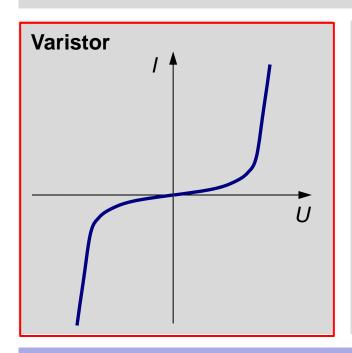
Beweglichkeit

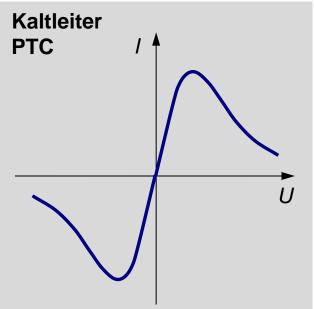
$$\mu = \frac{q(1-c)a^2 v_0}{kT} \exp\left(-\frac{E_A}{kT}\right)$$

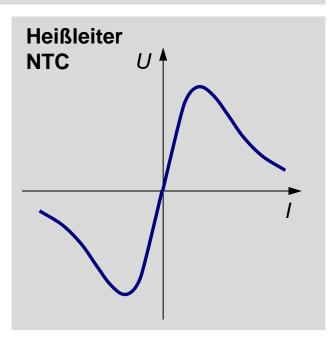
q: Ladung

T: Temperatur (in Kelvin)

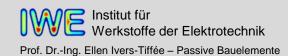
Ist die Konzentration *n* der ungesättigten Valenzen (= Punktdefekte) konstant, was bei vielen Hoppingleitern der Fall ist, so gilt:


$$\sigma(T) = ze_0 n \cdot \mu(T) \sim \frac{1}{T} \exp\left(-\frac{E_A}{kT}\right)$$


[Heywang 1984]

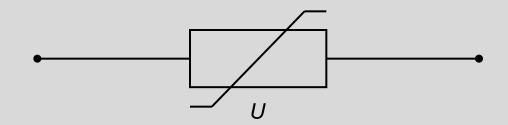

2.3 Halbleitende Metalloxide Überblick nichtlineare Widerstände (1)

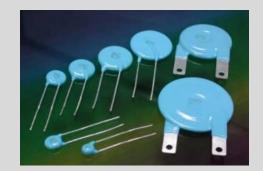
Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.



Korngrenzeffekte in Metalloxiden

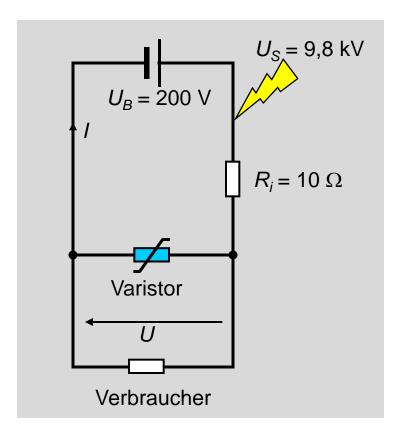
Widerstandsänderung durch Eigenerwärmung

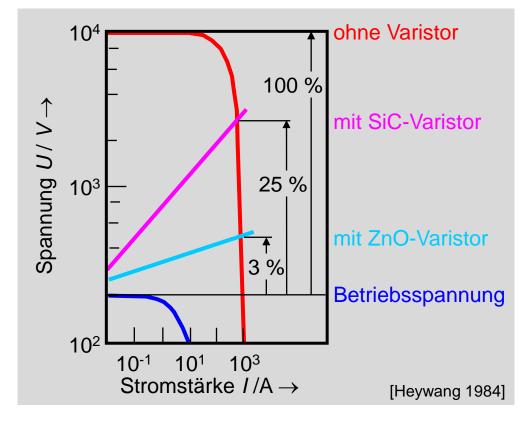

Einsatzgebiete von Varistoren



2.3 Halbleitende Metalloxide Bauelement: Keramische Varistoren

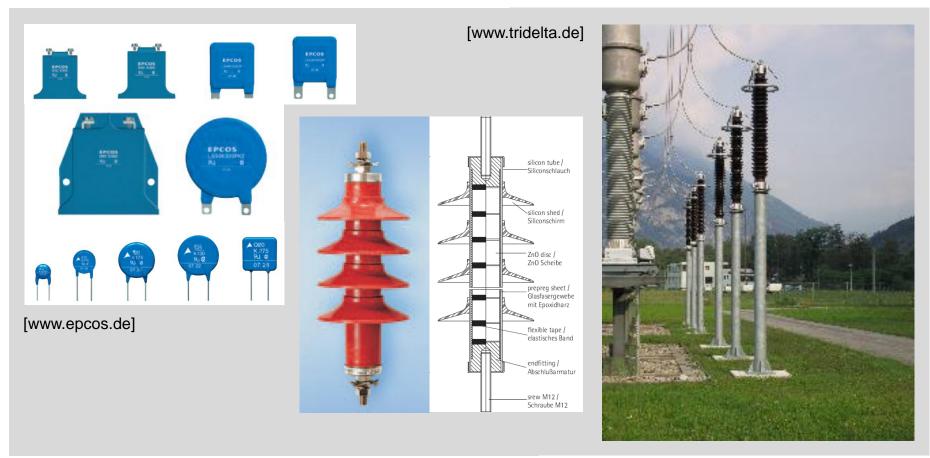
Schaltsymbol Varistor





[www.staratech.com]

2.3 Halbleitende Metalloxide Anwendung von Varistoren als Überspannungsschutz


Durch eine Störspannung $U_S(t)$ wird die Spannung U kurzzeitig erhöht. $U(t) = U_S(t) + U_B - R_i \cdot I(t)$

Doppeltlogarithmische Darstellung U(I)

- bei normaler Betriebsspannung
- bei Überspannung U_S = 9,8 kV

2.3 Halbleitende Metalloxide Bauformen von Varistoren

Bauformen von ZnO-Varistoren

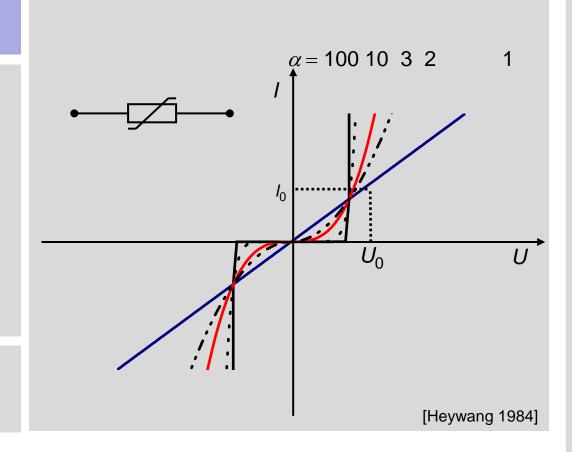
Varistoren als Hochspannungsableiter

2.3 Halbleitende Metalloxide Nichtlineare Strom-Spannungs-Kennlinie eines Varistors

Varistor: Variable Resistor

Spannungsabhängiger Widerstand mit symmetrischer *I(U)*-Kennlinie

$$I = \pm I_0 \cdot \left| \frac{U}{U_0} \right|^{\alpha}$$

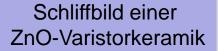

 α : Nichtlinearitätskoeffizient

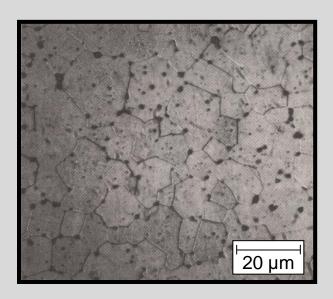
 I_0 : Nennansprechstrom

U₀: Nennansprechspannung

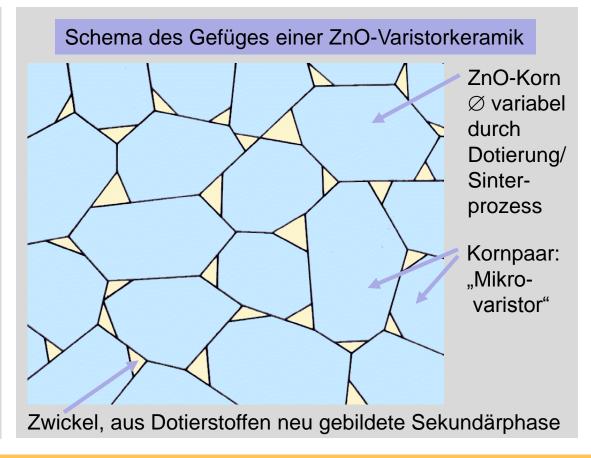
Nennwerte sind geometrieabhängig

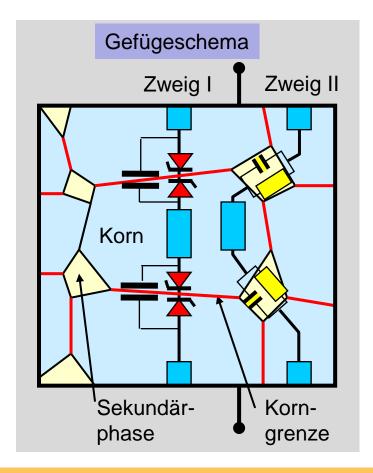
typische α -Werte: 5...70 Werkstoffe: SiC, ZnO

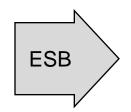




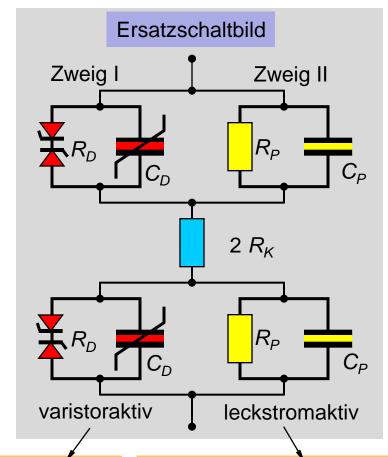
Physikalische Grundlagen des Varistoreffekts


2.3 Halbleitende Metalloxide Varistor: polykristallines ZnO-Gefüge mit Sekundärphasen

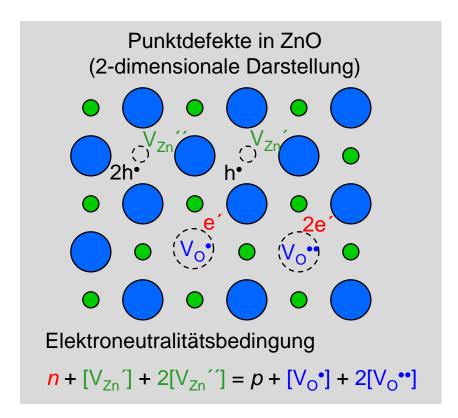

[Heywang 1984]

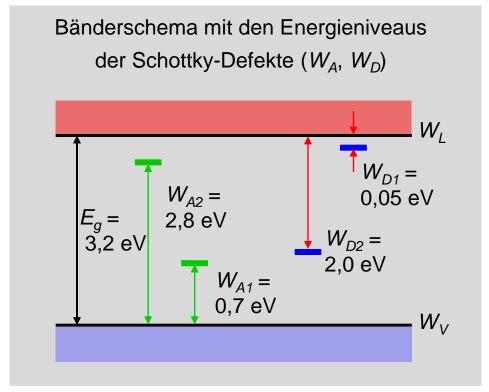


Polykristalline Keramik: Netzwerk aus parallel und seriell geschalteten "Mikrovaristoren" Varistor-Ansprechspannung: abhängig von der Korngröße und der Geometrie des Bauelements


2.3 Halbleitende Metalloxide Ersatzschaltbild für Varistoren

 $C_D \cong 240 \text{ nF/cm}^2$ $\rho_K \cong 1 \Omega \text{cm}$ $\rho_P \cong 80 \text{ k}\Omega \text{cm}$ $C_P \cong 90 \text{ nF/cm}^2$ [Einzinger 1982]


Reihenschaltung aus Korn- (R_K) und Sperrschicht- (R_D) Widerständen Parallelschaltung von R_D und C_D ; R_D und C_D spannungsabhängig


Leckstromaktive Bereiche R_P , C_P parallel zu den varistoraktiven Korngrenzen

2.3 Halbleitende Metalloxide Fehlstellen und Bänderschema in ZnO-Varistoren

 $V_0^{\bullet}, V_0^{\bullet\bullet}$: ein- bzw. zweifach geladene O-Leerstelle V_{Zn}', V_{Zn}'' :

ein- bzw. zweifach geladene Zn-Leerstelle

 (W_{D1}, W_{D2}) (W_{A1}, W_{A2}) A: Akzeptoren

D: Donatoren

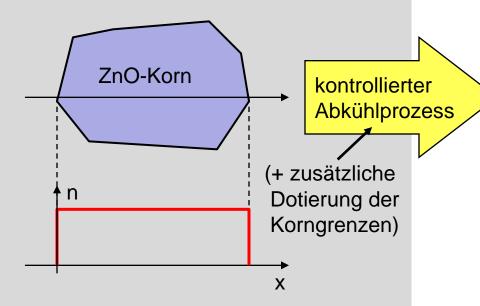
e', (*n*): Elektronen (-konzentration)

Defektelektronen (-konzentration)

[Heywang 1984]

h•, (p):

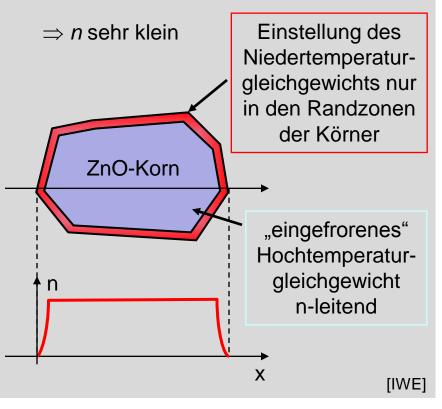
2.3 Halbleitende Metalloxide Einstellung der Korngrenzeigenschaften



Herstellung (Sintertemperatur ≈ 1300 °C)

Hochtemperaturgleichgewicht:

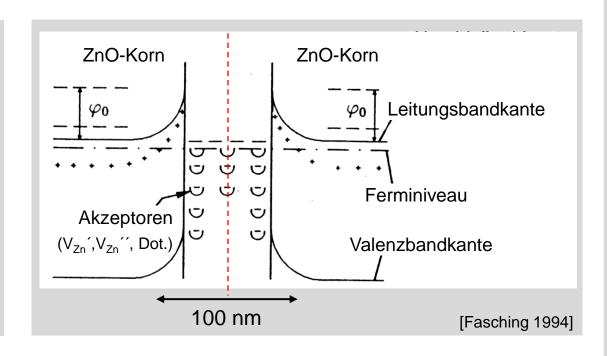
Überschuss an Sauerstoffleerstellen


Ladungsträger: $n = [V_O^{\bullet}] + 2 \cdot [V_O^{\bullet \bullet}]$

Betrieb (Betriebstemperatur < 100 °C)

→ Niedertemperaturgleichgewicht:

$$[V_{Zn}] + 2[V_{Zn}] \approx [V_{O}] + 2[V_{O}]$$


2.3 Halbleitende Metalloxide Bändermodell für die Korngrenze eines ZnO-Varistors (1)

Korngrenzen und Ladungsträgerkonzentrationen

"Mikrovaristor" — 1 Kornpaar Korngrenze — Einzelsperrschicht Ladungsträgerkonzentration

Bänderschema im spannungslosen Zustand

2.3 Halbleitende Metalloxide Zusammenfassung des Varistoreffekts

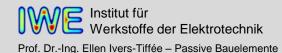
- Varistoreffekt in dotierter ZnO-Keramik ist eine Eigenschaft der Korngrenzbereiche. ZnO-Körner selbst sind niederohmig.
- Varistoreffekt ist ein Korngrenzeffekt.
- Varistoreffekt setzt bei einer Spannung von ca. 3,0 \pm 0,5 V / Korngrenze ein.
- Korngrenzbereich bildet eine Potentialbarriere von 0,6 eV.
- Ansprechgeschwindigkeiten des nichtlinearen Stroms liegen bei einigen Nanosekunden
- Technisches Varistorsystem:
 ZnO + Bi₂O₃ + MnO₂ + Co₃O₄ + Sb₂O₃ + Cr₂O₃ + weitere Additive
 (bis zu 10 Komponenten sind üblich, Grund: Optimierung der Sekundäreigenschaften des jeweiligen Varistor-Typs)

[Einzinger 1982]

Multiple-Choice-Frage MC1: Nichtlineare Widerstände

Zinkoxid-Varistoren

- a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.
- b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
- c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
- d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.



Multiple-Choice-Frage MC1: Nichtlineare Widerstände

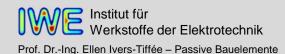
Zinkoxid-Varistoren

- a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.
- b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
- c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
- d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.
- dotierte ZnO-Keramik
- Technisches Varistorsystem:
 ZnO + Bi₂O₃ + MnO₂ + Co₃O₄ + Sb₂O₃ + Cr₂O₃ + weitere Additive
 (bis zu 10 Komponenten sind üblich, Grund: Optimierung der Sekundäreigenschaften des jeweiligen Varistor-Typs)

Multiple-Choice-Frage MC1: Nichtlineare Widerstände

Zinkoxid-Varistoren

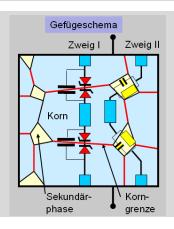
a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.


- b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
- c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
- d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.

Multiple-Choice-Frage MC1: Nichtlineare Widerstände

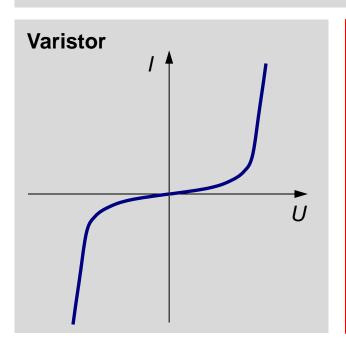
Zinkoxid-Varistoren

- a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.
- ✓ b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
- c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
 - d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.
 - Varistoreffekt in dotierter ZnO-Keramik ist eine Eigenschaft der Korngrenzbereiche.
 ZnO-Körner selbst sind niederohmig.
 - · Varistoreffekt ist ein Korngrenzeffekt.
 - Korngrenzbereich bildet eine Potentialbarriere von 0,6 eV.

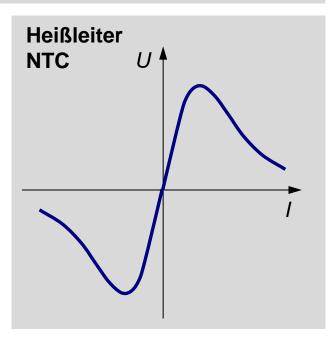


Multiple-Choice-Frage MC1: Nichtlineare Widerstände

Zinkoxid-Varistoren


- 🗶 a) bestehen ausschließlich aus hochreinem, polykristallinen ZnO.
- √ b) werden als Überspannungsschutz im Hochspannungsbereich eingesetzt.
- c) haben eine Ansprechspannung, die auf der Änderung der Leitfähigkeit der Körner mit dem elektrischen Feld beruht.
- √ d) lassen eine Abschätzung ihrer Ansprechspannung anhand der Anzahl der Korngrenzen senkrecht zur Stromrichtung und der pro Korngrenze abfallenden Spannung zu.
 - Varistoreffekt setzt bei einer Spannung von ca. 3,0 ± 0,5 V / Korngrenze ein.



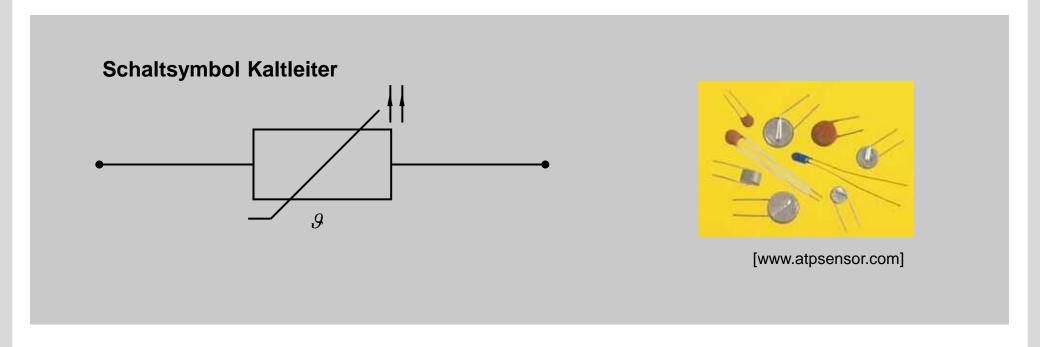

2.3 Halbleitende Metalloxide Überblick nichtlineare Widerstände (1)

Definition: Nichtlineare Widerstände weisen ein nichtlineares Verhalten in der U/I-Kennlinie auf.



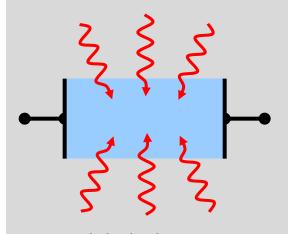
Korngrenzeffekte in Metalloxiden

Widerstandsänderung durch Eigenerwärmung



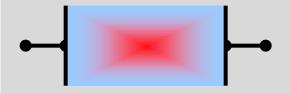
Einsatzgebiete von Kaltleitern

2.3 Halbleitende Metalloxide Bauelement: Keramischer Kaltleiter (PTC)



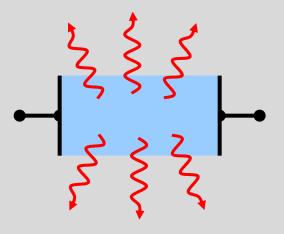
2.3 Halbleitende Metalloxide Anwendungen von Kaltleitern

Sensoren


Wärme aus der Umgebung

- elektrischesThermometer
- Übertemperaturschutz

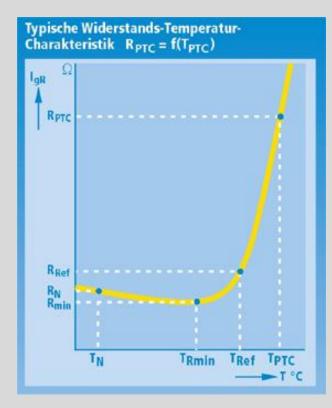
Regler

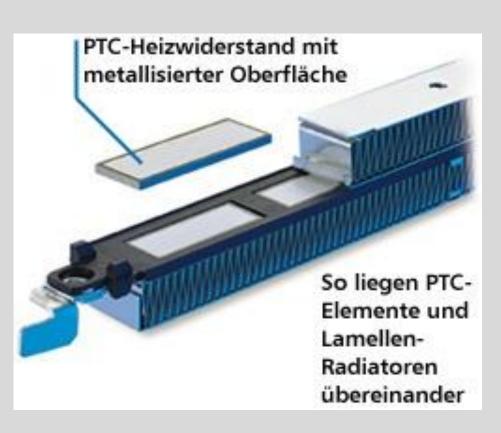

Eigenerwärmung

- Stromstabilisierung
- Schaltverzögerung
- Füllstandsüberwachung
- Strömungsmessung

Heizer

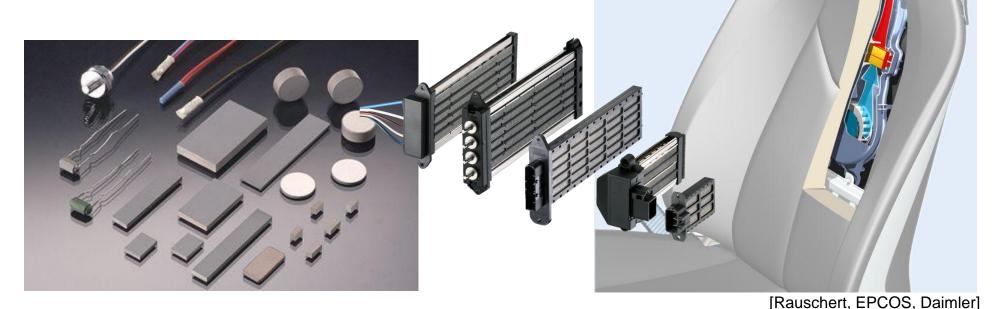
Wärmeabgabe




 Heizelemente selbstregelnd

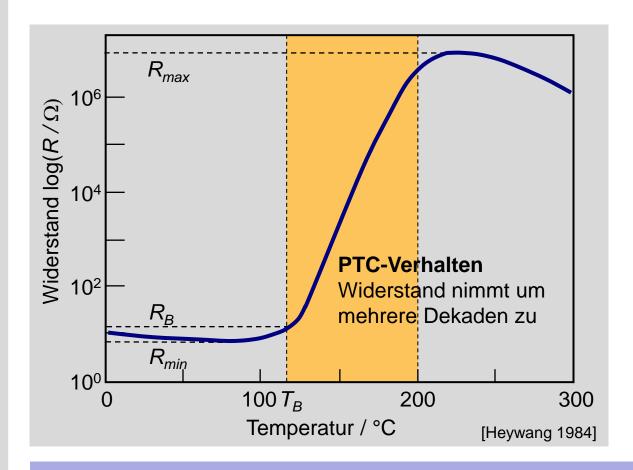
[Schaumburg 1994]

2.3 Halbleitende Metalloxide Selbstregelnde Heizelemente im Automobil


PTC-Kennlinie

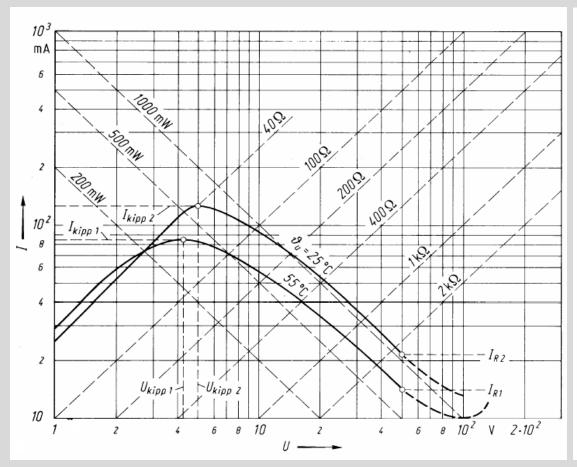

[Catem]

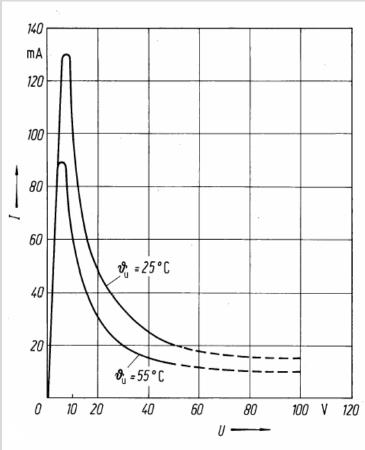
2.3 Halbleitende Metalloxide PTC-Anwendungen und Bauformen


- Heizelemente
- Einschaltstrombegrenzer
- Thermistoren f
 ür Motorstart-Anwendungen
- Thermistoren für Überlastschutz
- Grenztemperatur-Sensoren
- Schaltanwendungen
- Telekom-Anwendungen
- Thermisches Management in LED-Schaltkreisen

2.3 Halbleitende Metalloxide Temperaturabhängigkeit des Widerstands eines Kaltleiters

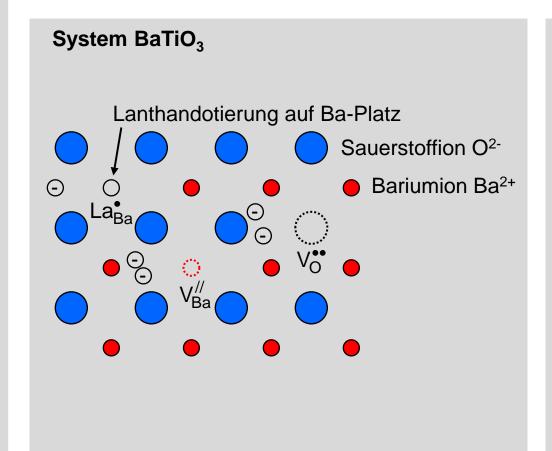
R_{min}, R_{max}
Extremwerte des PTC-Sprungs
mit Vorzeichenwechsel im
Temperaturkoeffizienten


R_{max}/R_{min} nutzbarer Widerstandshub Maximalverhältnis 10⁷


 T_B Bezugs- oder Nenntemperatur
des Bauelements bei der $R_B = 2 R_{min}$ T_B -Werte von -30...+250 °C

 TK_R : Temperaturkoeffizient des Widerstandes $TK_R = \frac{1}{R} \cdot \frac{dR}{dT}$, TK_R -Werte von 5...70 % K⁻¹

2.3 Halbleitende Metalloxide Nichtlineare U/I-Kennlinie des PTCs aufgrund Eigenerwärmung


[Zinke 1982]

Physikalische Grundlagen des Kaltleitereffekts

2.3 Halbleitende Metalloxide Defektchemische Grundlagen von n-dotiertem Bariumtitanat (BaTiO₃)

Entstehung der Bariumleerstellen:

$$Ba_{Ba}^{x} + O_{O}^{x} \rightleftharpoons V_{Ba}^{//} + V_{O}^{\bullet \bullet} + BaO \uparrow$$

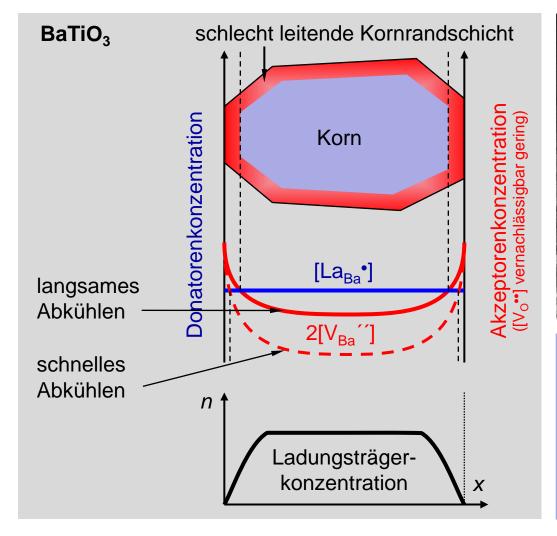
Entstehung der Sauerstoffleerstellen:

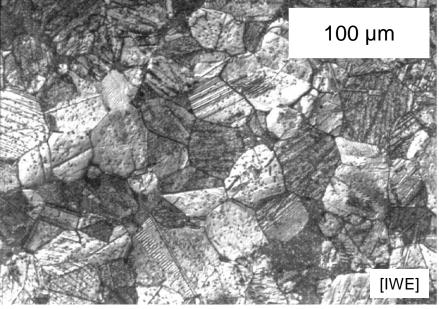
$$O_0^{\mathsf{X}} \rightleftharpoons V_0^{\bullet \bullet} + 2\mathrm{e}^{/} + \frac{1}{2}O_2(\mathrm{g}) \uparrow$$

n-Dotierung am Beispiel Lanthan:

$$La_{La}^{x} \rightleftharpoons La_{Ba}^{\bullet} + e^{/}$$

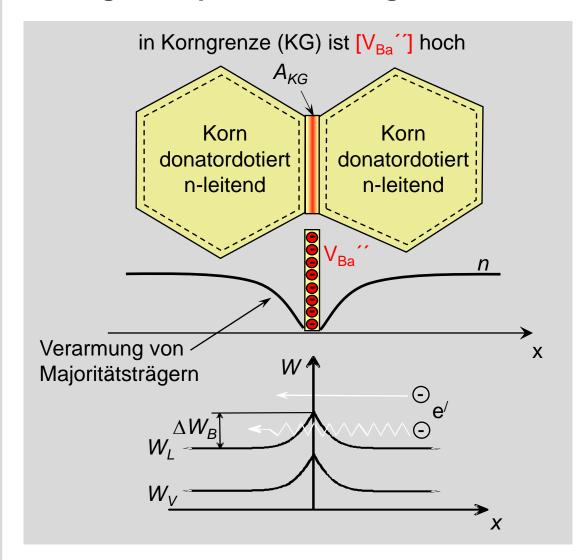
Elektroneutralität:


$$[e'] + 2[V''_{Ba}] \approx 2[V_{O}^{\bullet \bullet}] + [La_{Ba}^{\bullet}]$$


(intrinsische) Akzeptoren (intrinsische) (extrinsische)

Donatoren

2.3 Halbleitende Metalloxide Elektrische Eigenschaften der Korngrenzen in Bariumtitanat



Bariumleerstellenkonzentration und Profil werden von der Abkühlrate bestimmt.

schnelles Abkühlen ⇒ dünnere isolierende Kornrandschicht

2.3 Halbleitende Metalloxide Ladungstransport über Korngrenze

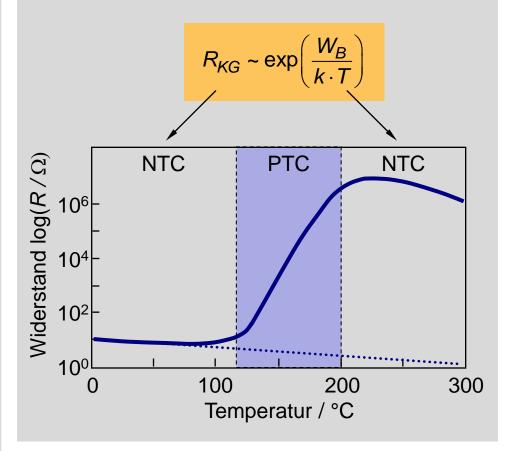
Höhe des Potentials der Schottky-Barriere ΔW_B an der Korngrenze

$$\Delta W_B = \frac{e_0 [A_{KG}]^2}{8n\varepsilon_0 \varepsilon_r}$$

[A_{KG}]: Oberflächenladung an der Korngrenze (V_{Ba}´´)

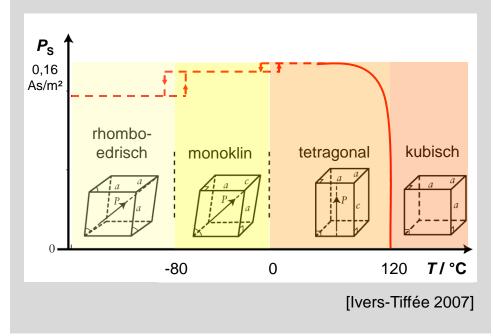
Leitfähigkeit (Tunnelstrom)

$$\sigma \sim \exp\left(-\frac{\Delta W_B}{k \cdot T}\right)$$


Widerstand der Korngrenzen

$$R_{KG} \sim \exp\left(\frac{\Delta W_B}{k \cdot T}\right)$$

2.3 Halbleitende Metalloxide Phasenwechsel im Temperaturbereich des PTC-Verhaltens

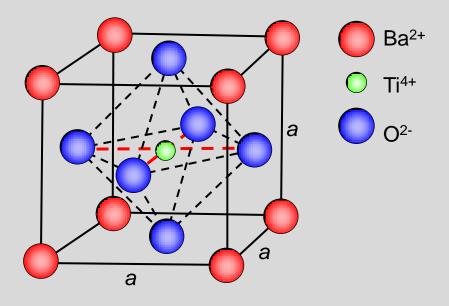


Temperaturfunktion des Korngrenzwiderstands kann die Widerstandszunahme nicht erklären.

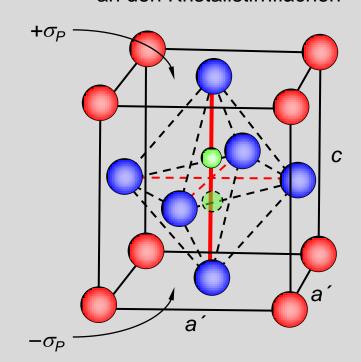
Von Bariumtitanat ist bekannt, dass in dem Temperaturbereich, wo das PTC-Verhalten vorherrscht, ein Phasenwechsel im Gitter des Perowskitkristalls stattfindet.

 \Rightarrow spontane Polarisation P_s als f(T)

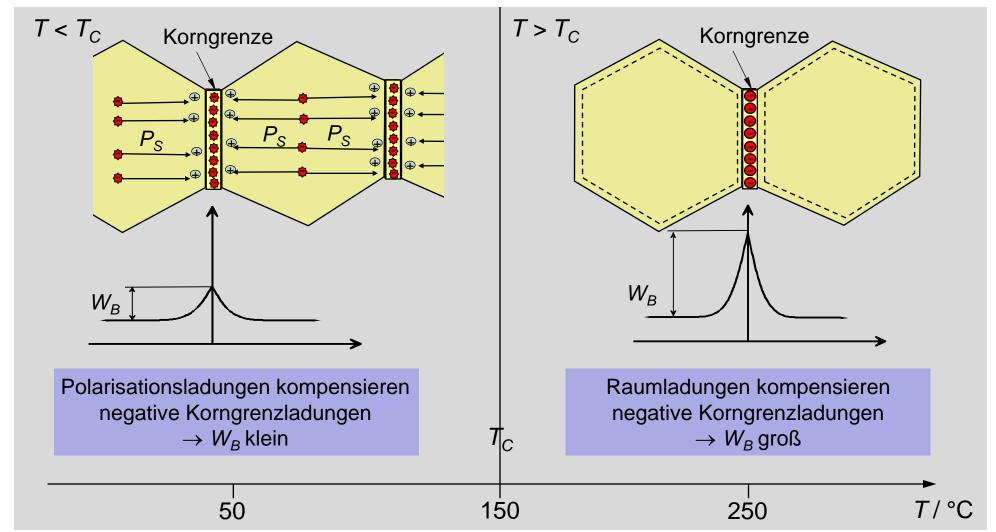
2.3 Halbleitende Metalloxide

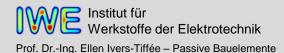

Vorgriff auf Ferroelektrika: Spontane Entstehung von Polarisationsladungen

 $T > T_C$: • kubisches Gitter

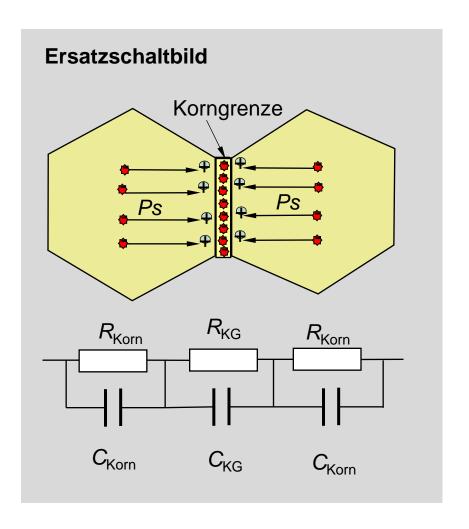

paraelektrischer Zustand

T_C: Phasenumwandlungstemperatur bzw. Curie-Punkt

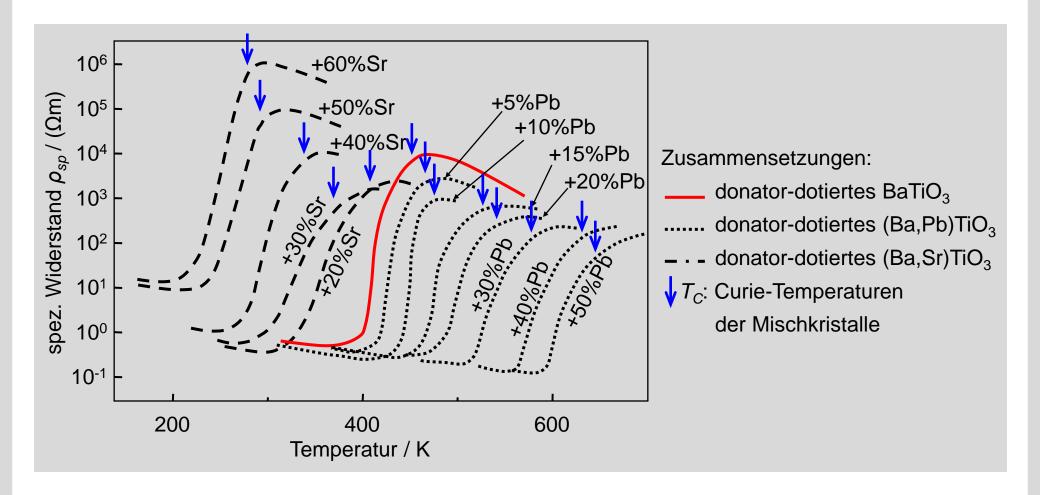

 $T < T_C$: • tetragonales Gitter


- ferroelektrischer Zustand
- spontane Ladungsverschiebung
- permanente Flächenladungen σ_P an den Kristallstirnflächen

2.3 Halbleitende Metalloxide Kompensation der Potentialbarriere durch spontane Polarisation



2.3 Halbleitende Metalloxide Elektrisches Ersatzschaltbild und Zusammenfassung


Zusammenfassung

Keramische Kaltleiter bestehen aus polykristallinen ferroelektrischen n-leitenden Metalloxiden, wie z.B. n-dotiertes BaTiO₃.

Der PTC-Effekt beruht auf dem Zusammenspiel der Korngrenzsperrschicht (doppelte Schottky-Barriere, V_{Ba} ') und dem Phasenübergang ferroelektrisch/paraelektrisch des Kristalls bei $T = T_C$.

2.3 Halbleitende Metalloxide Verschiebung der Phasenumwandlungstemperatur durch Dotierung

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
- b) können aus Bariumtitanat-Einkristallen bestehen.
- c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

- a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.
- b) können aus Bariumtitanat-Einkristallen bestehen.
- c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.

- b) können aus Bariumtitanat-Einkristallen bestehen.
- c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.

Multiple-Choice-Frage MC2: Nichtlineare Widerstände

PTC-Widerstände

a) weisen in weiten Temperaturbereichen einen negativen Temperaturkoeffizienten des Widerstandes auf.

b) können aus Bariumtitanat-Einkristallen bestehen.

c) sind als Heizelemente hervorragend geeignet, da oberhalb der Bezugstemperatur der Widerstand stark ansteigt und die Leistung begrenzt.