

Vorlesung 9

12.1.2015

Ionenleitung

2.5 lonenleiter Elektronische und ionische Leitfähigkeitsanteile

Die elektrische Leitfähigkeit σ eines Werkstoffes setzt sich additiv aus den Leitfähigkeitsanteilen aller beweglichen Ladungsträger k zusammen.

$$\sigma_{total} = \sum_{k} |z_{k}| \cdot e_{0} \cdot [A_{k}] \cdot \mu_{k} = e_{0} \cdot n \cdot \mu_{n} + e_{0} \cdot p \cdot \mu_{p} + \sum_{ion} |z_{ion}| \cdot e_{0} \cdot [V_{ion}] \cdot \mu_{ion}$$

Elektronen Löcher

 σ : Elektrische Leitfähigkeit

[A_k]: Konzentration der Ladungsträger *k*

 $|z_k|$: Ladungszahl des Ladungsträgers k


 μ_k : Beweglichkeit des Ladungsträgers k

 σ_{ion} bewegliche Ionen (Leerstellen)

In vielen Werkstoffen (z.B. in Ionenkristallen und Oxiden) trägt ein Teil der vorhandenen Ionen zur Leitfähigkeit bei. Die Anzahl der beweglichen Ionen entspricht der Anzahl der Defekte (Leerstellen) im Kristallgitter, da die Bewegung der Ionen über die Leerstellen erfolgt.

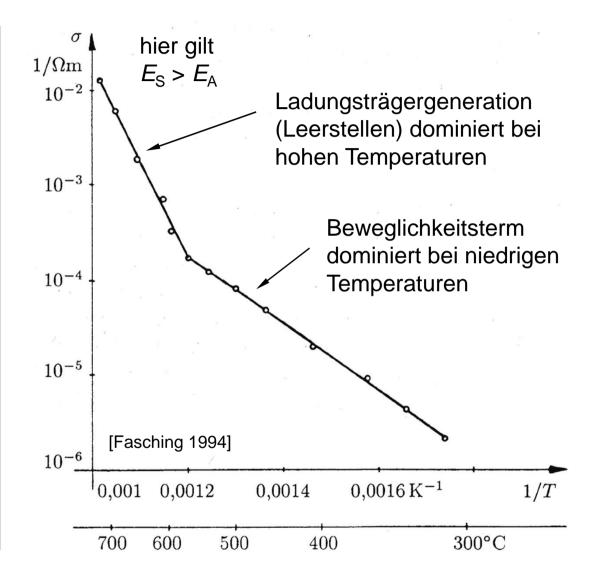
2.5 Ionenleiter Elektronen-, Ionen- und Mischleiter

2.5 Ionenleiter Beispiel: Natriumchlorid (NaCl)

Beweglichkeit der Ladungsträger

$$\mu_{ion}(T) \sim \frac{1}{T} \exp\left(-\frac{E_A}{kT}\right)$$

Ladungsträgerkonzentration

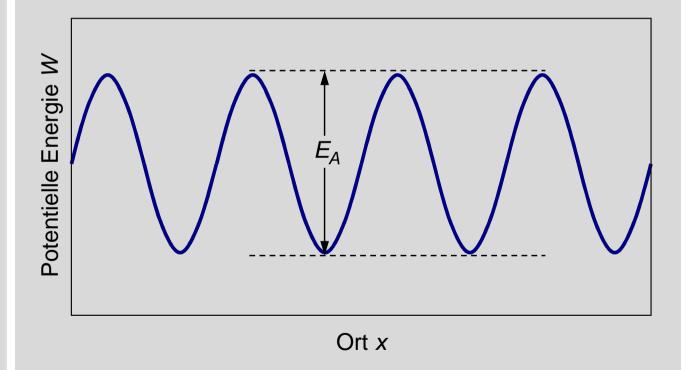

$$[A_{ion}(T)] \sim \exp\left(-\frac{E_{S}}{kT}\right)$$

Leitfähigkeit

$$\sigma(T) = z_{ion} \cdot e_0 \cdot [A_{ion}(T)] \cdot \mu_{ion}(T)$$

 E_A : Aktivierungsenergie

E_S: Schottky-Fehlordnungsenergie



2.5 Ionenleiter Beweglichkeit von Ionen bzw. Leerstellen im Gitter

Beispiel

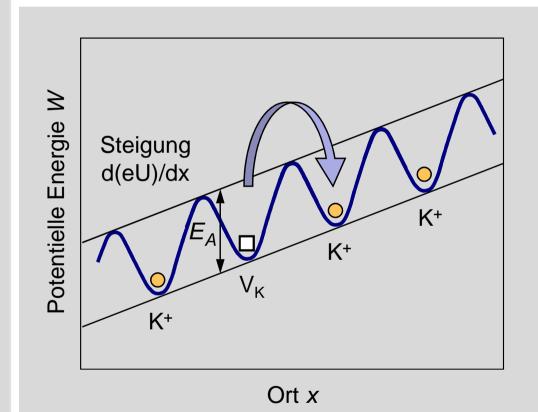
Potentielle Energie von Kationenleerstellen V_K im Kristallgitter der Struktur K⁺A⁻

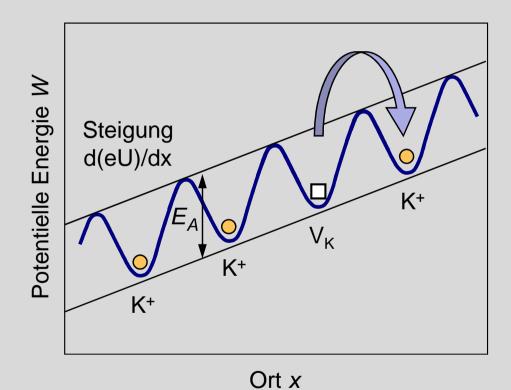
Diffusionskonstante bei Platzwechsel (Hopping)

$$D_V = D_0 \cdot \exp\left(-\frac{E_A}{k \cdot T}\right)$$

Einstein-Beziehung

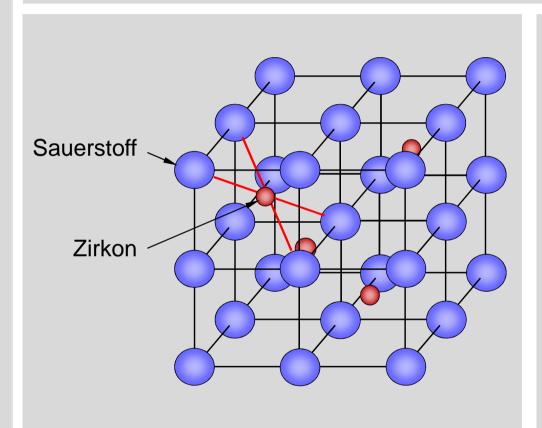
$$\mu = \frac{\mathbf{e} \cdot \mathbf{D}}{\mathbf{k} \cdot \mathbf{T}}$$

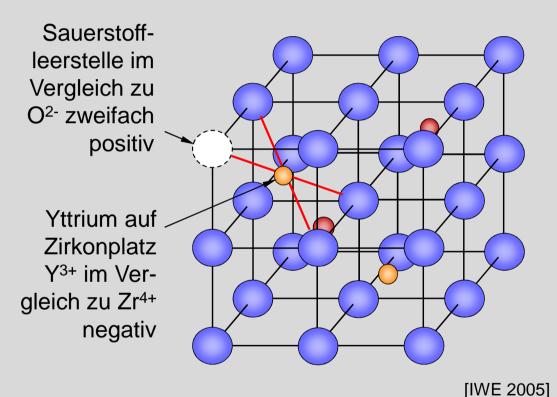

Beweglichkeit


$$\mu_{V} = \frac{e \cdot D_{0}}{k \cdot T} \cdot \exp\left(-\frac{E_{A}}{k \cdot T}\right)$$

2.5 Ionenleiter Transport von Ionen/Leerstellen bei angelegter Spannung

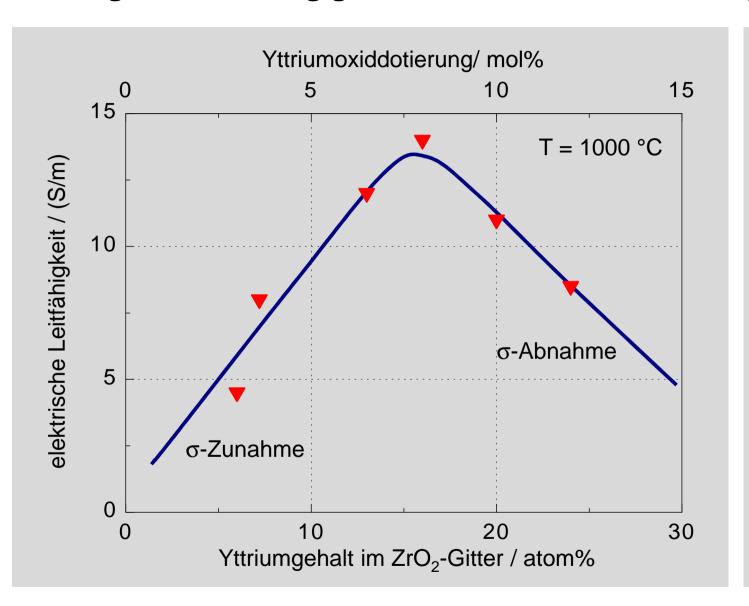
Transport von Kationenleerstellen V_K bei angelegter Spannung U





2.5 Ionenleiter Beispiel: Yttrium-dotiertes Zirkonoxid (YSZ)

Einbaugleichung für Yttriumoxid (Y_2O_3) in das Zirkonoxidgitter (ZrO_2): $Y_2O_3 \rightarrow 2Y_{Zr}^{\prime} + 3O_0^{x} + V_0^{\bullet \bullet}$

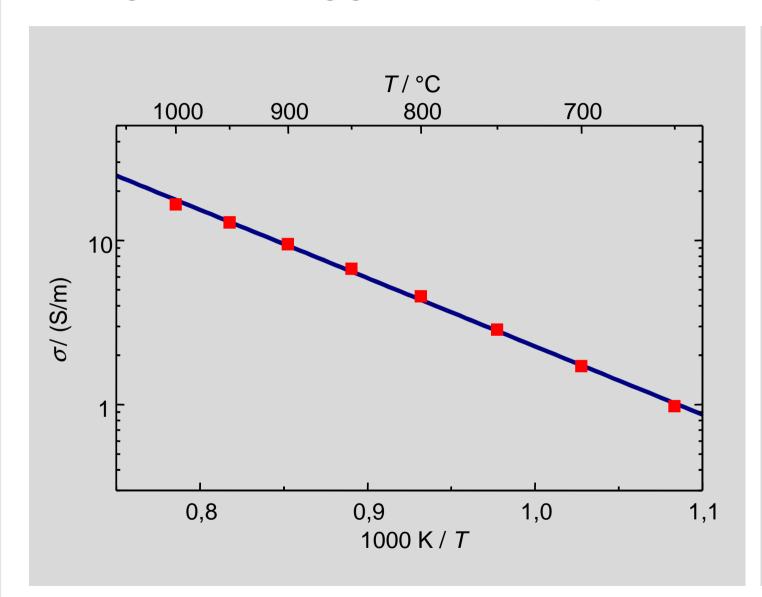


Durch **Dotierung mit Y** können Sauerstoffleerstellen im Zirkonoxidgitter gezielt erzeugt werden.

2.5 Ionenleiter Leitfähigkeit in Abhängigkeit von der Yttrium Dotierung

σ-Zunahme

Ansteigende Konzentration beweglicher Ladungsträger (Bildung von Sauerstoffleerstellen).


σ-Abnahme

Verlust an Beweglichkeit durch Bildung so genannter Leerstellencluster.

[IWE 2005]

2.5 Ionenleiter Leitfähigkeit in Abhängigkeit von der Temperatur

Zahlenwerte

Т	σ
950 °C	12.8 S/m
700 °C	1.72 S/m

$$\sigma_{lon}(T) = \frac{A}{T} \cdot \exp\left(-\frac{E_A}{kT}\right)$$

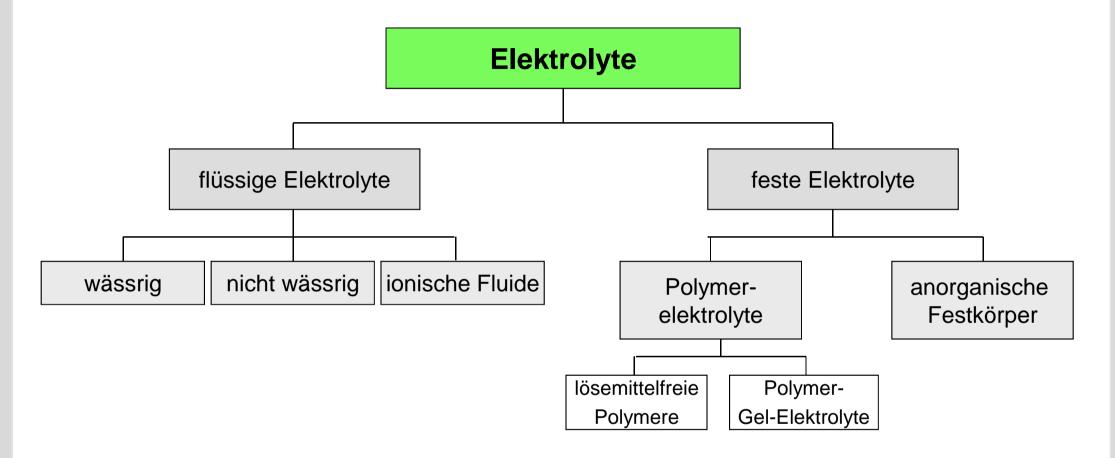
[IWE 2005]

2.5 Ionenleiter Elektrolyte

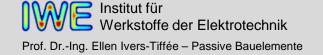
Definition: Werkstoffe mit dominierendem ionischen Leitfähigkeitsanteil heißen Elektrolyte.

Überführungszahl:

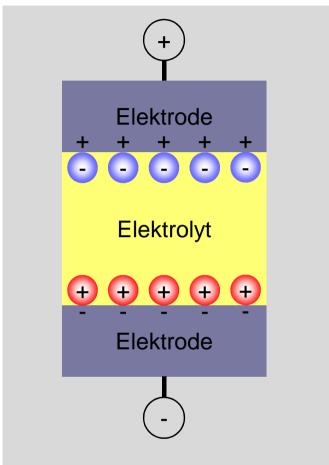
$$t_{ion} = \frac{\sigma_{ion}}{\sigma_{total}}$$


 $t_{ion} = 1 \rightarrow idealer Elektrolyt$ (nicht existent)

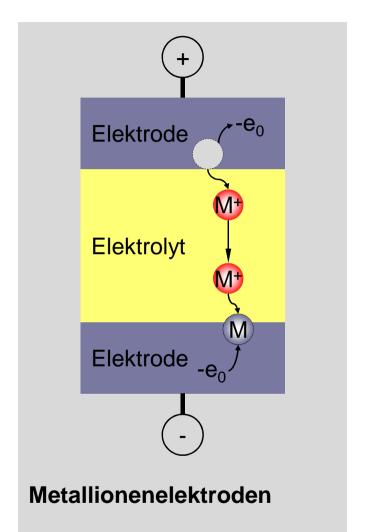
$$1-t_{ion} = 10^{-10} \dots 0.05 \rightarrow \text{reale Elektrolyte}$$

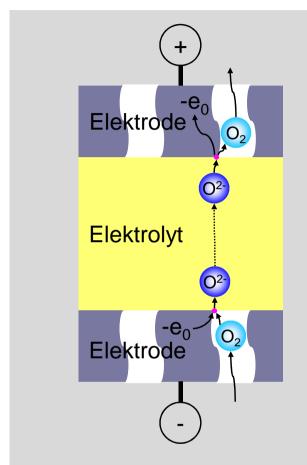

Elektrolyt	Werkstoffbeispiel	lon	σ_{ion} / S/m	T/°C	Anwendung
Li-Polymerelektrolyte	Li _{1,3} Al _{0,3} Ti _{1,7} (PO ₄) ₃	Li+	0.01	25	Li-Polymer-Batterien
Polymerelektrolyte	Nafiontm	H+	8.3	25	Polymerelektrolyt-Brennstoffzellen
β'-Aluminiumoxid	β'- Al ₂ O ₃	Na+	38	300	Na/S-, NaNiCI-Batterien
Karbonatschmelze	(Li/Na/K) ₂ CO ₃	CO ₃ ²⁻	35	650	Schmelzkarbonat-Brennstoffzellen
dot. Zirkondioxid	Zr _{0.85} Y _{0.15} O _{1.93}	O ²⁻	10	900	λ-Sonde, Festoxid-Brennstoffzellen

2.5 Ionenleiter Elektrolyte



[Siemens AG, CT PS 4, Wa, 01/2004]

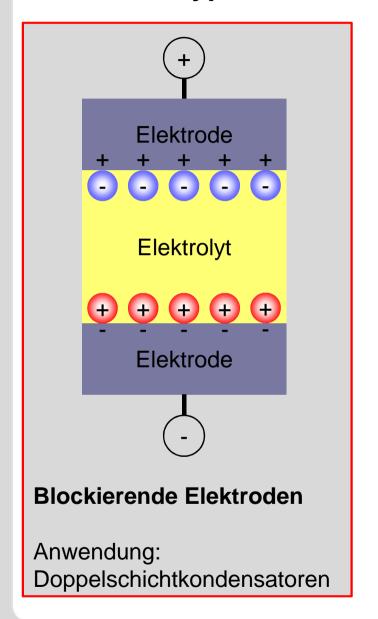

2.5 Ionenleiter Elektrodentypen

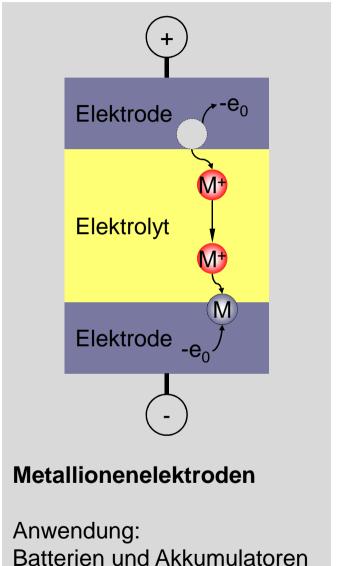


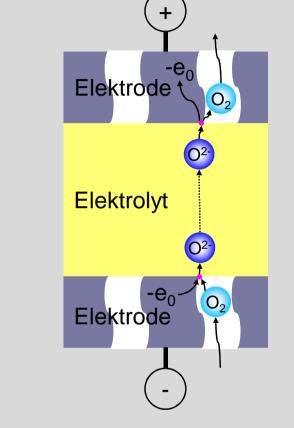
Blockierende Elektroden

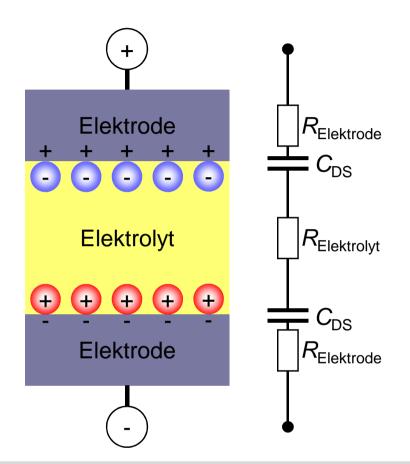
Anwendung: Doppelschichtkondensatoren

Anwendung: Batterien und Akkumulatoren


Gasdiffusionselektroden


Anwendung: Sensoren & Brennstoffzellen

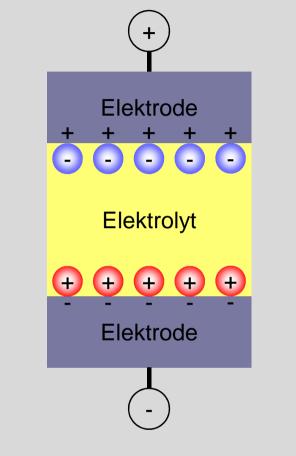

2.5 Ionenleiter Elektrodentypen


Gasdiffusionselektroden

Anwendung: Sensoren & Brennstoffzellen

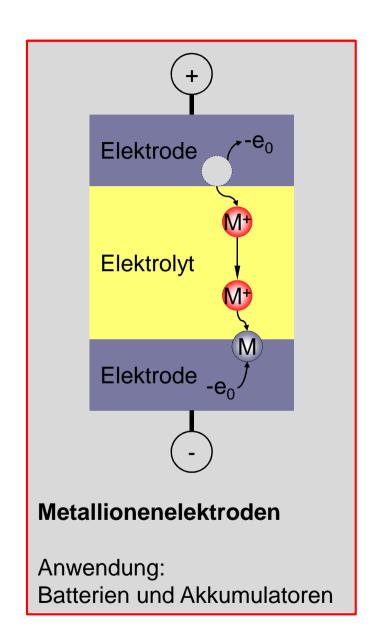
2.5 Ionenleiter

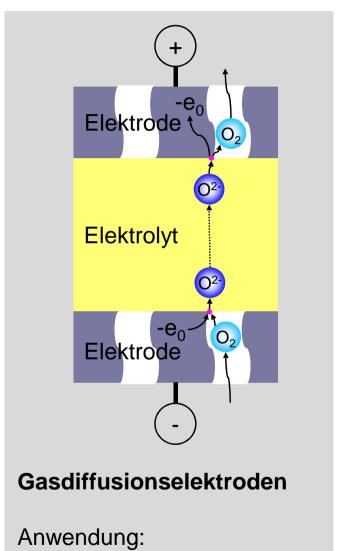
Elektrodentypen: Blockierende Elektroden



- Ladungsträgertransport in Elektrolyt und Elektroden
- keine Ladungstransferreaktion an der Grenzfläche Elektrode / Elektrolyt
 - ⇒ kein Stromfluss (dc)
- Raumladungszonen an den Grenzflächen Elektrode / Elektrolyt
 - ⇒ Doppelschichtkapazität
- Einsatz in Doppelschichtkondensatoren

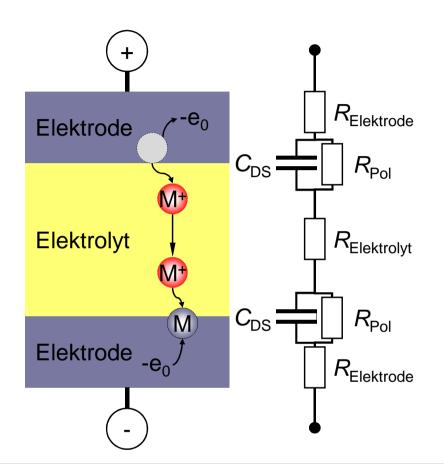
Blockierende Elektroden verhindern den Ladungstransport über die Grenzfläche Elektrode/Elektrolyt. Innerhalb eines zulässigen Betriebsbereichs läuft keine Ladungstransferreaktion ab. Eine angelegte Spannung fällt vollständig über den Raumladungszonen an der Grenzfläche Elektrode/Elektrolyt ab.


2.5 Ionenleiter Elektrodentypen



Blockierende Elektroden

Anwendung: Doppelschichtkondensatoren

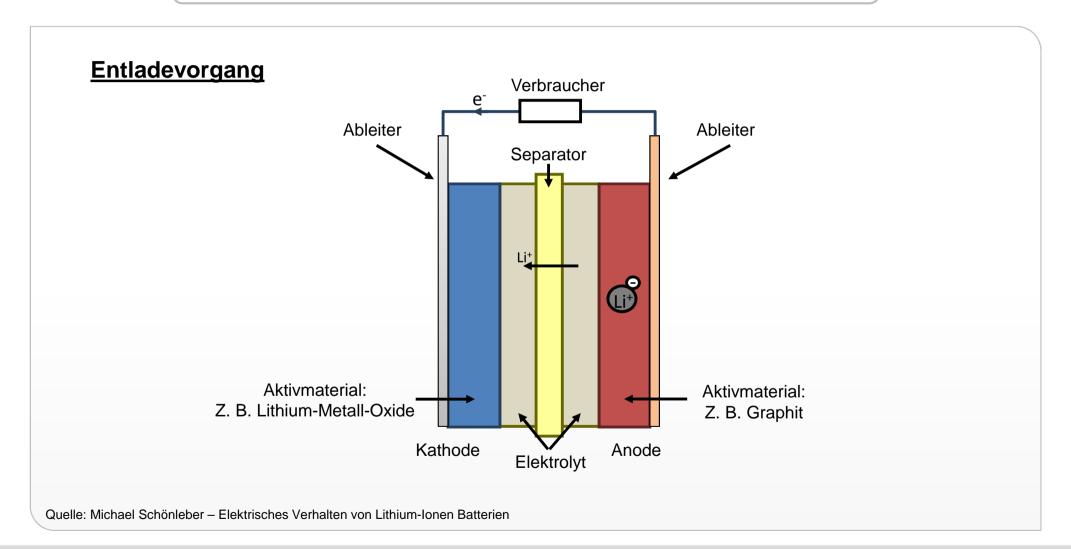


Sensoren & Brennstoffzellen

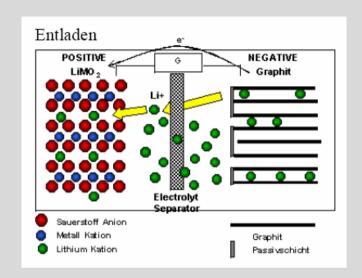
2.5 Ionenleiter

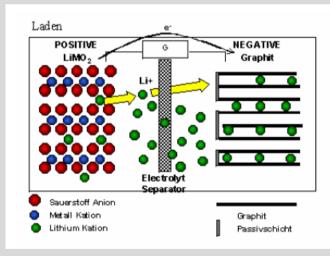
Elektrodentypen: Metallionenelektroden

- Ladungsträgertransport in Elektrolyt und Elektroden
- (verlustbehaftete) Ladungstransferreaktion an der Grenzfläche Elektrode/Elektrolyt
 - ⇒ Polarisationswiderstand R_{Pol}
 - ⇒ Stromfluss (dc) möglich
- Einsatz in Batterien und Akkumulatoren


In einer Metallionenelektrode ist das Elektrodenmaterial (und z.T. auch der Elektrolyt) an der Ladungstransferreaktion beteiligt.

Bei Anlegen einer Spannung fließt ein Strom, bis die Elektrode vollständig umgesetzt ist.


Funktionsprinzip einer Lithium-Ionen Batterie



2.5 Ionenleiter Das Lithium-Ionen-System

Zellreaktion

Positive:

$$LiCoO_2 \rightleftharpoons Li_{1-x}CoO_2 + x Li^+ + x e^-$$

(0 \le x \le 0,6)

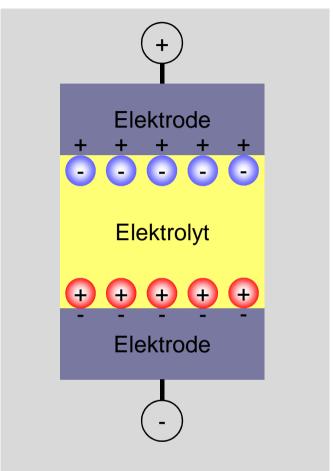
Negative:

$$x \operatorname{Li}^+ + \operatorname{C}_6(\operatorname{Graphit}) + x \operatorname{e}^- \rightleftharpoons \operatorname{Li}_x \operatorname{C}_6$$

(0 \le x \le 1)

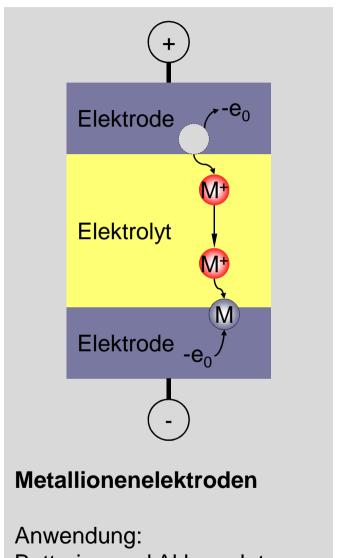
Gesamtreaktion:

$$LiCoO_2 + 0.6 C_6 \rightleftharpoons Li_{0.4}CoO_2 + 0.6 LiC_6$$


Kein metallisches Lithium in der Zelle.

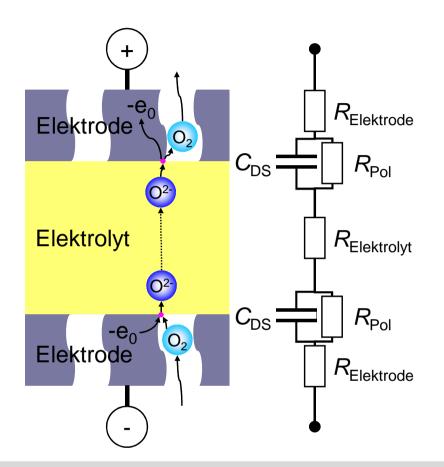
Der Elektrolyt nimmt nicht an der Reaktion teil und dient als reines Transportmedium für Lithium-Ionen.

⇒ weniger Elektrolyt erforderlich

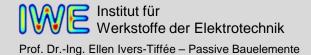

2.5 Ionenleiter Elektrodentypen

Blockierende Elektroden

Anwendung: Doppelschichtkondensatoren


Batterien und Akkumulatoren

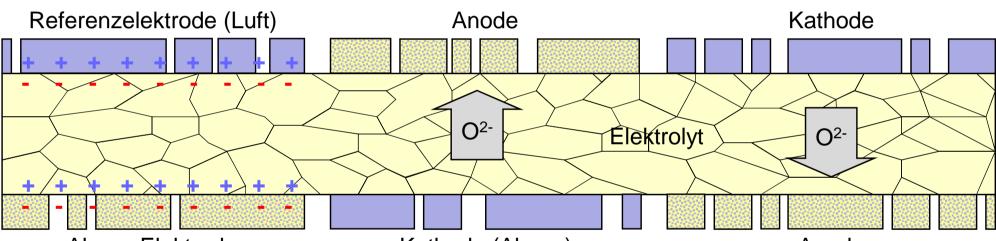
2.5 Ionenleiter


Elektrodentypen: Gasdiffusionselektroden

- Ladungsträgertransport in Elektrolyt und Elektroden
- (verlustbehaftete) Ladungstransferreaktion an der Dreiphasengrenze
 Gasraum/Elektrode/Elektrolyt
 - \Rightarrow Polarisationswiderstand R_{Pol}
 - ⇒ Stromfluss (dc) möglich
 - ⇒ poröse, katalytisch aktive Elektrode
- Einsatz in Sensoren und Brennstoffzellen

In einer Gasdiffusionselektrode fungiert das Elektrodenmaterial als elektronischer Leiter und Katalysator, ist aber an der Ladungstransferreaktion nicht beteiligt. Elektrode (und Elektrolyt) verändern sich bei Stromfluss nicht.

2.5 Ionenleiter Von der potentiometrischen Lambda-Sonde zur Brennstoffzelle


$$\frac{1}{2}$$
 O₂+ 2 e⁻ \Leftrightarrow O²⁻

$$O^{2-} \rightarrow \frac{1}{2} O_2 + 2 e^{-}$$

$$\frac{1}{2}$$
 O₂+ 2 e⁻ \rightarrow O²⁻

$$\frac{1}{2}$$
 O₂+ 2 e⁻ \rightarrow O²⁻

$$O^{2-} + H_2 \rightarrow H_2O + 2 e^{-}$$

 $O^{2-} + CO \rightarrow CO_2 + 2 e^{-}$

Abgas-Elektrode

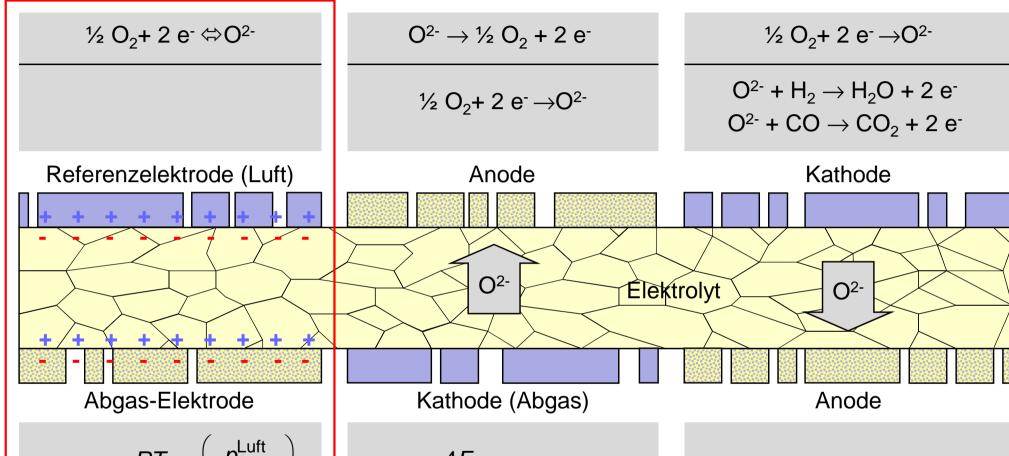
Kathode (Abgas)

Anode

$$U_{\text{Nernst}} = \frac{RT}{4F} \cdot \ln \left(\frac{p_{\text{O}_2}^{\text{Luft}}}{p_{\text{O}_2}^{\text{Abgas}}} \right)$$

 $I_{\text{Pump}} = \frac{4F}{RT} \cdot D_{O_2} \cdot A \cdot p_{O_2}^{\text{Abgas}}$

 $P_{el} = (U_{Nernst} - R_i \cdot I_{Last}) \cdot I_{Last}$


potentiometrischer Sensor

amperometrischer Sensor

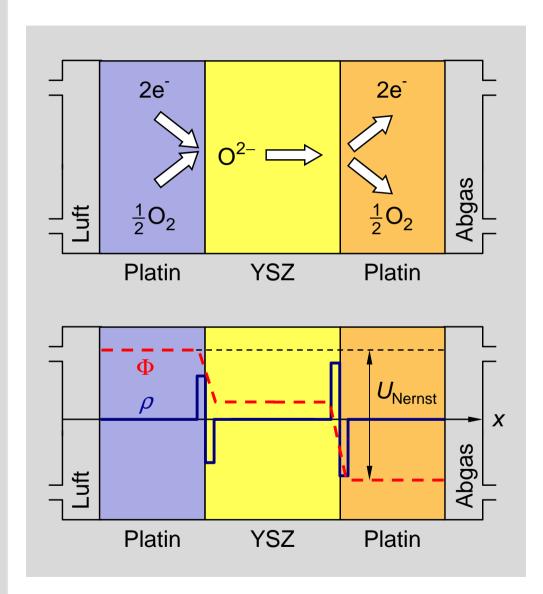
Brennstoffzelle

2.5 Ionenleiter Von der potentiometrischen Lambda-Sonde zur Brennstoffzelle

$$U_{\text{Nernst}} = \frac{RT}{4F} \cdot \ln \left(\frac{p_{O_2}^{\text{Luft}}}{p_{O_2}^{\text{Abgas}}} \right)$$

potentiometrischer Sensor

$$I_{\text{Pump}} = \frac{4F}{RT} \cdot D_{O_2} \cdot A \cdot p_{O_2}^{\text{Abgas}}$$


amperometrischer Sensor

$$P_{el} = (U_{Nernst} - R_i \cdot I_{Last}) \cdot I_{Last}$$

Brennstoffzelle

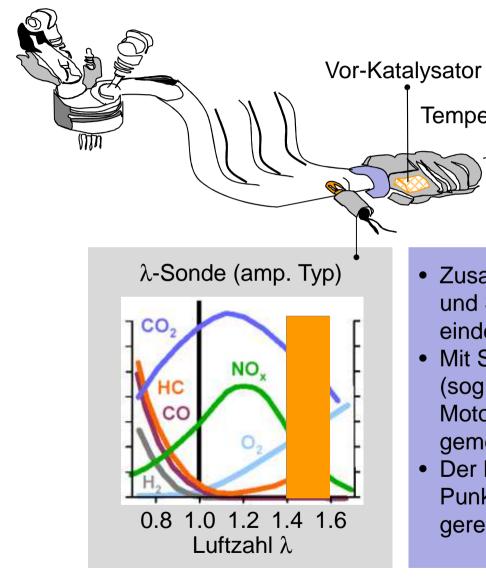
2.5 Ionenleiter Aufbau und Prinzip der potentiometrischen λ -Sonde (2)

Im Gleichgewichtszustand muss sich das elektrochemische Potential auf beiden Seiten angleichen (Gibbs'sche Thermodynamik).

elektrochemisches Potential: $\tilde{\mu} = \mu + nF\Phi$

$$\tilde{\mu}_{O_2}^{Luft} = \mu_o^p + RT \cdot ln(p_{O_2}^{Luft}) + nF\Phi_1$$

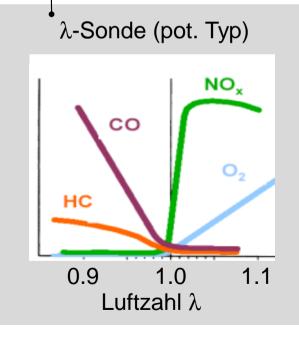
$$\tilde{\mu}_{O_2}^{Abgas} = \mu_o^p + RT \cdot \ln(p_{O_2}^{Abgas}) + nF\Phi_2$$


Gleichgewichtsbedingung: $\tilde{\mu}_{O_2}^{Luft} = \tilde{\mu}_{O_2}^{Abgas}$

Für jedes Sauerstoffmolekül O_2 werden vier Elektronen verschoben, d.h. n = 4.

$$U_{\text{Nernst}} = \Phi_2 - \Phi_1 = \frac{RT}{4F} \cdot \ln \left(\frac{p_{\text{O}_2}^{\text{Luft}}}{p_{\text{O}_2}^{\text{Abgas}}} \right)$$

2.5 Ionenleiter Abgasreinigungskonzept moderner Benzinmotoren



• Zusammenhang zwischen λ und Sauerstoffgehalt ist eindeutig.

Temperatursensor

NO_x-Katalysator

- Mit Sauerstoffsensoren (sog. λ-Sonden) wird der Motorbetriebspunkt λ gemessen.
- Der Katalysator wird in den Punkt optimalen Umsatzes geregelt.

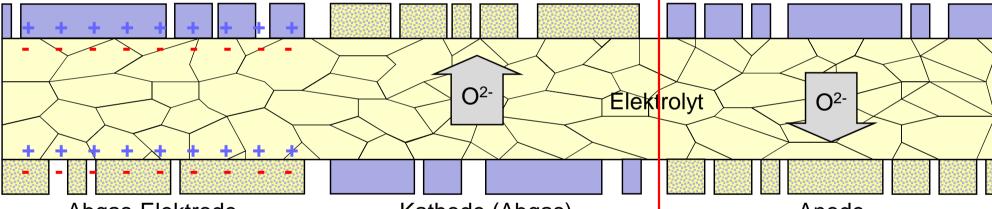
3-Wege-Katalysator

2.5 Ionenleiter Von der potentiometrischen Lambda-Sonde zur Brennstoffzelle

$$\frac{1}{2}$$
 O₂+ 2 e⁻ ⇔ O²⁻

$$\mathrm{O^{2\text{-}}}
ightarrow 1\!\!/_{\!\!2} \, \mathrm{O_2} + 2 \; \mathrm{e^{\text{-}}}$$

$$\frac{1}{2}$$
 O₂+ 2 e⁻ \rightarrow O²⁻


$$\frac{1}{2}$$
 O₂+ 2 e⁻ \rightarrow O²⁻

$$O^{2-} + H_2 \rightarrow H_2O + 2 e^{-}$$

 $O^{2-} + CO \rightarrow CO_2 + 2 e^{-}$

Referenzelektrode (Luft)

Anode

Kathode

Abgas-Elektrode

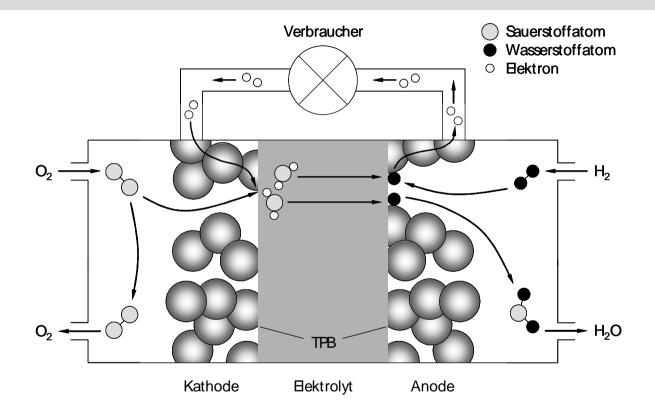
$$U_{\text{Nernst}} = \frac{RT}{4F} \cdot \ln \left(\frac{p_{\text{O}_2}^{\text{Luft}}}{p_{\text{O}_2}^{\text{Abgas}}} \right)$$

$$I_{\text{Pump}} = \frac{4F}{RT} \cdot D_{O_2} \cdot A \cdot p_{O_2}^{\text{Abgas}}$$

$$P_{el} = (U_{Nernst} - R_i \cdot I_{Last}) \cdot I_{Last}$$

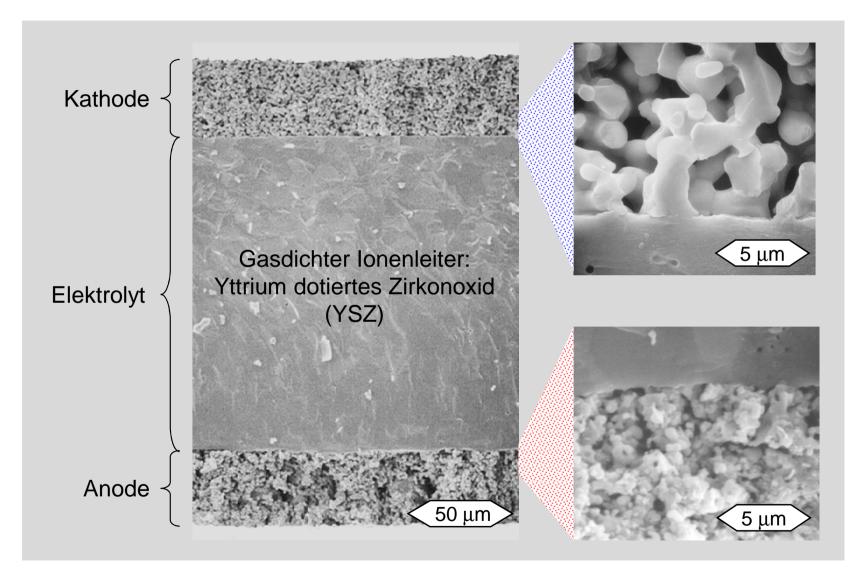
potentiometrischer Sensor

amperometrischer Sensor


Brennstoffzelle

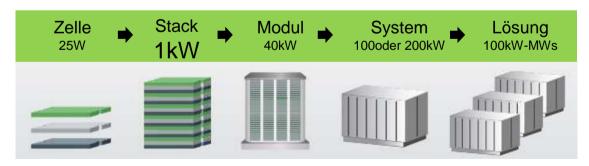
2.5 Ionenleiter

Ausblick: Erzeugung elektrischer Energie durch Brennstoffzellen


Beispiel: Hochtemperatur-Festkörperelektrolyt-Brennstoffzelle, engl. Solid Oxide Fuel Cell (SOFC)

In Brennstoffzellen wird die chemische Energie des Brennstoffes direkt in elektrische Nutzenergie umgewandelt. Daraus resultiert ein hoher theoretischer Nettowirkungsgrad.

2.5 Ionenleiter Aufbau und Mikrostruktur einer SOFC-Einzelzelle


2.5 Ionenleiter

Stationäre SOFC: Bloom Energy Server (T bis 980°C)

Installation bei Google, eBay, Apple, Walmart, Coca Cola, u.v.m


Bloomenergy®

ES-5400 Energy Server

Leistung	
EI. Wirkungsgrad	> 50%
Brenngas	Erdgas , Biogas
Gewicht	11t
Größe	4.7m x 2.6m x 2m
Umgebung	-25 bis 45°C 0-100% Luftfeuchte

ES-5700 Energy Server

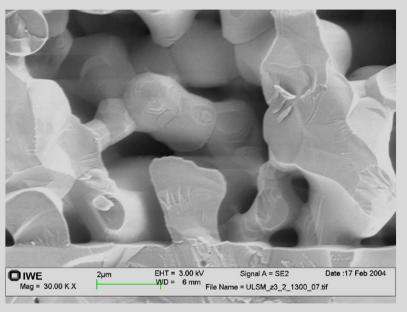
Leistung	200kW
El. Wirkungsgrad	> 50%
Brenngas	Erdgas , Biogas
Gewicht	19.5t
Größe	8m x 2.6m x 2m
Umgebung	-25 bis 45°C 0-100% Luftfeuchte

2.5 Ionenleiter Weiterführende Veranstaltungen

Batterien und Brennstoffzellen

Wintersemester 2 SWS Prof. Dr.-Ing. E. Ivers-Tiffée

BMW i3 (mit Range Extender)


Leergewicht: 1270 kg

Beschleunigung 0-100 km/h: 7,2 s Elastizität: 80 – 120 km/h: 4,9 s Stromverbrauch 13,5 in kWh/100 km Reichweite rein elektrisch: 150 km

Gesamtreichweite mit Range Extender: 300 km

Batterie- und Brennstoffzellensysteme

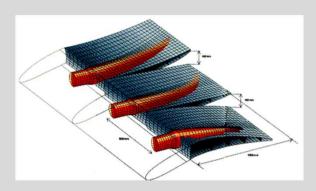
Sommersemester 2 SWS Dr.-Ing. A. Weber

2.5 Ionenleiter Weiterführende Veranstaltungen

Sensoren

Wintersemester 2 SWS (Master)

Dr.-Ing. W. Menesklou


Inhalt

- Temperatursensoren
- Mech. Sensoren
- Chemische Sensoren
- Bio Sensoren
- Gassensoren
- Optische Sensoren
- Magnet. Sensoren ...

Sensorsysteme

Sommersemester 2 SWS (Master)

Wolfram Wersing (Siemens)

Inhalt

- Piezoelektrischer Effekt
- Piezoelektrischen Resonatoren
- Sensoren und Aktoren
- Integrierte Infrarotdetektoren...