

Karlsruhe Institute of Technology

Communications Engineering Lab Univ.-Prof. Dr. rer.nat. Friedrich Jondral

Wahrscheinlichkeitstheorie – Zusatzmaterial 2

Wintersemester 2015/16

Aufgabe 6

Definitionen

Bedingte Wahrscheinlichkeit (Definition 3.1-1)

$$P(A|B) = \frac{P(AB)}{P(B)}$$
 mit $P(B) > 0$ (3.1-1)

Formel von der totalen Wahrscheinlichkeit (Satz 3.1-1)

 $\{A_n\}$ sei eine vollständige Ereignisdisjunktion von Ω und $P(A_n)>0 \; \forall n$

$$P(B) = \sum_{n=1}^{N} P(B|A_n)P(A_n)$$
 (3.1-5)

Formel von Bayes: Sei P(B) > 0

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$
(3.1-6)

Aufgabe 8

b) Verteilungsfunktion der ZV X

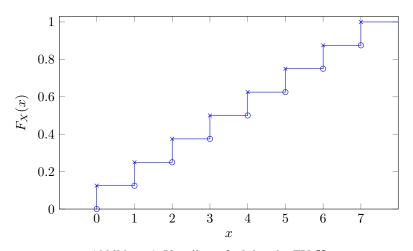


Abbildung 1: Verteilungsfunktion der ZV X

b) "Dichte" der ZV X

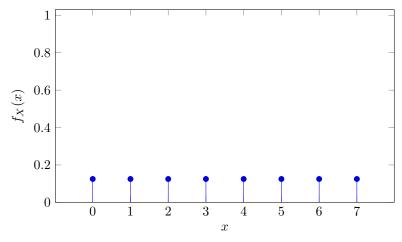


Abbildung 2: "Dichte" der ZV X

c) "Dichte" der ZV Y

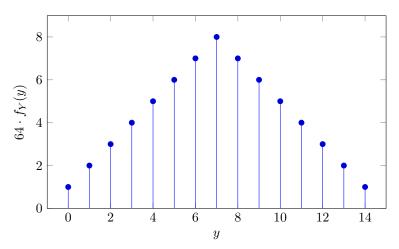


Abbildung 3: "Dichte" der ZV Y

Aufgabe 9

b) Wahrscheinlichkeitsdichte

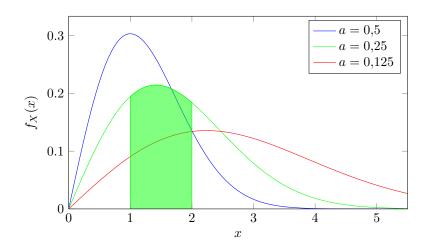


Abbildung 4: Wahrscheinlichkeitsdichte der ZV X

b) Verteilungsfunktion

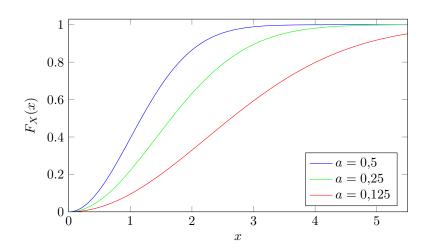


Abbildung 5: Verteilungsfunktion der ZV X

Zusammenfassung

• Bedingte Wahrscheinlichkeit:

$$P(A|B) = \frac{P(AB)}{P(B)}$$
 mit $P(B) > 0$ (Def. 3.1-1)

• Formel von der totalen Wahrscheinlichkeit:

 $\{A_n\}$ sei eine vollständige Ereignisdisjunktion von Ω und $(A_n)>0 \ \forall n$

$$P(B) = \sum_{n=1}^{N} P(B|A_n)P(A_n)$$
 (Satz 3.1-1)

• Formel von Bayes:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} \quad \text{mit } P(A) > 0, P(B) > 0 \tag{Satz 3.1-1}$$

• Unabhängigkeit von Ereignissen:

$$P(AB) = P(A|B) \cdot P(B) = P(A) \cdot P(B)$$
 (Def. 3.2-1)

• Zufallsvariable X:

Eine Funktion $X = X(\xi) : \omega \to \mathbb{R}$, die jedem Ergebnis aus Ω eine reelle Zahl zuordnet, so dass $X^{-1}((-\infty, a]) \in \mathcal{B}, \forall a \in \mathbb{R}$ gilt. (Def. 4.1-1)

• **Verteilungsfunktion** einer ZV X:

$$F_X(x) := P(X \le x)$$
 (Def. 4.1-2)

$$= \int_{-\infty}^{x} f_X(u) \, \mathrm{d}u \tag{Def. 4.1-4}$$

• Eigenschaften einer Dichte:

(i)
$$f_X(x) \ge 0 \quad \forall x \in \mathbb{R}$$
 (Def. 4.1-4)

(ii)
$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$
 (Kap. 4.1)