A{]]

Karlsruhe Institute of Technology

Algorithmen Il

Simon Gog — gog@kit.edu

- v, 0 : :
LA 900

2

2 3 T
O 1 1o
\ N ')

KIT — The Research University in the Helmholtz Association

Range minimum queries (RMQs) AT

llllllllllllllllllllllllllllll

Definition

Given an array A of length n containing elements from a totally ordered
set. A range minimum query rmqa (¢, r) returns the position of the
minimal element in the sub-array A[/, r]:

rmqga (¢, r) = argmin AlK]

I<k<r

Example

9 10 11 12 13 14 15
416(4/3/1/4 8

— |

~l | 0

w o

~J | W
O | O

o0 | o
N
N

A=

Institute of Theoretical Informatics

1 Simon Gog:
Algorithmics

Algorithmen I

Range minimum queries (RMQs) AT

llllllllllllllllllllllllllllll

Definition

Given an array A of length n containing elements from a totally ordered
set. A range minimum query rmqa(¢, r) returns the position of the
minimal element in the sub-array A|/, r|:

rmqga (¢, r) = argmin AlK]

(<k<r

Example

9 10 11 12 13 14 15
4164|3148

— | N

~l | 0

O o

~N W

rmq(2,6) =

Institute of Theoretical Informatics

1 Simon Gog:
Algorithmics

Algorithmen I

Range minimum queries (RMQs) AT

llllllllllllllllllllllllllllll

Definition

Given an array A of length n containing elements from a totally ordered
set. A range minimum query rmqa(¢, r) returns the position of the
minimal element in the sub-array A|/, r|:

rmqga (¢, r) = argmin AlK]

(<k<r
Example
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A=18[2(4|7|1|9(3|5|7(4|6|4|3|1(4]|8
rmq(5,9) =6

Institute of Theoretical Informatics

1 Simon Gog:
Algorithmics

Algorithmen I

Range minimum queries (RMQs) AT

llllllllllllllllllllllllllllll

Definition

Given an array A of length n containing elements from a totally ordered
set. A range minimum query rmqa(¢, r) returns the position of the
minimal element in the sub-array A|/, r|:

rmqga (¢, r) = argmin AlK]

(<k<r
Example
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A=|812|14|7|1|9|3[5|7(4|(6|4|3|1|4|8
rmq(0,15) = 4

Institute of Theoretical Informatics

1 Simon Gog:
Algorithmics

Algorithmen I

Overview (T

llllllllllllllllllllllllllllll

a Notation: Complexity of an algorithm is denoted with (f(n),g(n)) ,
where f(n) is preprocessing time and g(n) query time.
a Different solutions:
® naive approach 1: (O(n?), O(1)) using O(n?) words of space
naive approach 2: (O(1), O(n))
(O(n), O(logn)) using O(n) words of space

(

(nloglogn), O(1)) using O(nloglog n) words of space
(n), O(1)) using O(n) words of space

(n), O(1)) using 4n+ o(n) bits of space

(n), O(1)) using 2n+ o(n) bits of space

The last two solutions do not require access to the original array A.

2 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

3

(O(n), O(logn)) — solution #1

AT

rrrrrrrrr

10

11

12

13

14

15

Simon Gog:
Algorithmen I

ttttttttttttttttttttt

Institute of Theoretical Informatics

Algorithmics

3

(O(n), O(log n)) — solution #1

Simon Gog:
Algorithmen I

Karlsruhe Institute of Technology

13

13

11

13

14

10

11

12

13

14

15

Institute of Theoretical Informatics

Algorithmics

3

(O(n), O(log n)) — solution #1

Simon Gog:
Algorithmen I

Karlsruhe Institute of Technology

13

13

11

13

14

10

11

12

13

14

15

Institute of Theoretical Informatics

Algorithmics

3

(O(n), O(logn)) — solution #1

Simon Gog:
Algorithmen I

AT

rrrrrrrrr

13
9 13
11 13 | 14
2|13|4|5 10|11|12]|13|14|15
21471119 6(4/ 3 148
rmq(1,5) =4

ttttttttttttttttttttt

Institute of Theoretical Informatics

Algorithmics

4

(O(n), O(logn)) — solution #1 AT

llllllllllllllllllllllllllllll

m Store index of minimum in binary interval tree.
a Tree has O(n) nodes.

m Follow all nodes which overlap with the query interval but are not fully
contained in it (at most 2 per level).

® So not more than 2log n such nodes in total.

m Select all children of these nodes which are fully contained in the
query interval.

m From these nodes select the index with minimal value.

Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(nlogn), O(1)) — solution #2 AT

llllllllllllllllllllllllllllll

m For each item Ali| store an array M;[0, log n|.
o M[j] =rmqa(i,i+2 —1)

m Space is O(nlog n) words

m How long does pre-computation take?

Find the largest k with 2 < ¢ — r + 1. Then

MiK] it AIMK]] < AIM;_pi, (K]

rmaa (£, r) = { M; ok 1|k] otherwise

Question: How can k be determined in constant time?

5 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

6

(O(nloglogn), O(1)) solution AT

llllllllllllllllllllllllllllll

Split Ainto t = @ blocks By, ..., B;_1. B spans O(log n) items of A.
Create an array S|0, t — 1] with S[i] = min{x € B;}
Build rmq structure #2 for S
For each block B; of O(log n) elements build rmq structure #2
Total space: O(n) 4+ O(nloglog n)
Determine blocks By, B, which contain ¢ and r
Calculate m = rmqg(¢' +1,r' — 1)
Let kg, k1, ko be the results of the RMQs in blocks ¢/, r’, and m relative
to A
Return arg min, Alk;| for 0 < k < 3
Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution AT

llllllllllllllllllllllllllllll

The Cartesian Tree C of an array is defined as follows:

m The root of C is the (leftmost) minimum element of the array and is
labeled with its position

® Removing the root splits the array into two pieces

m The left and right children of the root are recursively constructed
Cartesian trees of the left and right subarray

®m C can be constructed in linear time

7 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution AT

llllllllllllllllllllllllllllll

Solution overview:

m Partition the array into blocks of size s
® Each block corresponds to a Cartesian Tree of size s

m Precompute the s® answers for all (°) possible Cartesian Trees of
size s in a table P.

m P requires O(225s?) words of space
log n
A

S—H

m Fors= P requires o(n) words of space

@ Build structure #2 for array A’ consisting of the block minima of A. This
takes O(n) construction time and uses O(n) words of space.

8 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

LCA & +1RMQ AT

llllllllllllllllllllllllllllll

LCA (Lowest Common Ancestor)

Given a rooted tree T of n nodes. For nodes v and w of T the query
LCAT(v, w) returns the lowest common ancestor of uand v in T. l.e. the
node which is (1) ancestor of v and w and (2) maximizes the distance to

the root.

9 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

LCA & +1RMQ AT

llllllllllllllllllllllllllllll

Given a rooted tree T of n nodes. For nodes v and w of T the query
LCA7(v, w) returns the lowest common ancestorof uand v in T. l.e. the

node which is (1) ancestor of v and w and (2) maximizes the distance to
the root.

9 Simon Gog:

Institute of Theoretical Informatics
Algorithmen I

Algorithmics

LCA & +1RMQ AT

llllllllllllllllllllllllllllll

LCA (Lowest Common Ancestor)

Given a rooted tree T of n nodes. For nodes v and w of T the query
LCAr (v, w) returns the lowest common ancestor of uand v in T. lL.e. the
node which is (1) ancestor of v and w and (2) maximizes the distance to

the root.

9 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

LCA & +1RMQ AT

llllllllllllllllllllllllllllll

If there is a (f(n), g(n))-time solution for RMQ, then there is a
(f(2n—1)+ O(n),g(2n—1) 4+ O(1))-time solution for LCA.

m Let T be the Cartesian Tree of array A

m Letarray E|O,..., 2n — 2| store the nodes visited in an DFS Euler Tour
of T

m Letarray L[O,..., 2n — 2| store the corresp. levels of the nodes in E

a Let RO,..., n— 1] be an array which stores a representative

R[i] = min{j | E|j] = i} for each node i of T

10 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

LCA & +1RMQ AT

llllllllllllllllllllllllllllll

1=01234567890123456738920
E=abcbdbaefgfeheij1i1kiea
L=012121012321212323210

abcdefg h 1 j k
R=01247 89 12 14 15 17
11 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

LCA & +1RMQ AT

llllllllllllllllllllllllllllll

1i=01234567890123456738920
E=abcbdbaefgfeheiji1kiea
L=012121012321212323210

abcdefg h 1 j k
R=01247 89 12 14 15 17

LCAr(v,w) = E[RMQ, (min(R|v], Rlw]), max(R|v], Rlw]))]
11 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

LCA & +1RMQ AT

llllllllllllllllllllllllllllll

1=012345678901234567890
E=abcbdbaefgfeheij1i1kiea
L=012121012321212323210
abcdefg h 1 j k
R=01247 89 12 14 15 17

LCAT(v,w) = E[RMQ_(min(R[v|, R[w]), max(R[v], R[w]))]

Note: (L[i] — L[i+1]) € {—1,+1}. So we only need to solve RMQs
over arrays with this &1 restriction. This is called £1 RMQ.

11 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

B O
o) I e
w N
o1 W
=
= Ol
o O
> N
o1 0
N O
o O =
W =

12 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

i =

01234
A=46351

o O B+~

5678901
464526 3
(1) Build Cartesian Tree

o 1 2 3 4 5 6 7 8 9 10 11

12 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

i =

01234
A=46351

o O B+~

5678901
464526 3
(1) Build Cartesian Tree

o 1 2 3 4 5 6 7 8 9 10 11

12 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

i
A

o O B+~

> O

12345678901
63514645263
(1) Build Cartesian Tree

o 1 2 3 4 5 6 7 8 9 10 11

12 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

i
A

o O B+~

> O

12345678901
63514645263
(1) Build Cartesian Tree

o 1 2 3 4 5 6 7 8 9 10 11

12 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

1
1i=012345678901
A=4635146452¢63
o 1 2 3 4 5 6 7 8 9 10 11
12 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

1
1i=012345678901
A=4635146452¢63
o 1 2 3 4 5 6 7 8 9 10 11
12 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

1
1i=012345678901
A=4635146452¢63
o 1 2 3 4 5 6 7 8 9 10 11
12 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

1
1i=012345678901
A=4635146452¢63
o 1 2 3 4 5 6 7 8 9 10 11
12 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

1
1i=012345678901
A=4635146452¢63
o 1 2 3 4 5 6 7 8 9 10 11
12 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

1
1i=012345678901
A=4635146452¢63
o 1 2 3 4 5 6 7 8 9 10 11
12 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

1
1i=012345678901
A=4635146452¢63
o 1 2 3 4 5 6 7 8 9 10 11
12 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

1
1i=012345678901
A=4635146452¢63
o 1 2 3 4 5 6 7 8 9 10 11
12 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

i
A

o O B+~

01234567829 1
46 3514645263

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

12 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7T 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence
BPext —

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7T 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

1

BPext — (

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7T 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

13

BPext: ((

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7T 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134

BPext: (((

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7T 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134

BPext = ((((

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134

BPext = (((()
0

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6

BPext = (((()(
0

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6

BPext = (((() ((
0

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6

BPext = (((() (()

0 1

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6

BPext = (((()(())

0 1

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4

BPext = (((()(()))

0 1

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4

BPext = (((()(()))(

0 1

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4

BPext = (((()(()))()

0 1 2

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5

BPext = (((()(()))()(

0 1 2

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5

BPext = (((()(())) () ((

0 1 2

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5

BPext = (((()(()))()(()

o 1 2 3

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 5

BPext = (((()(()))()(())

o 1 2 3

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53

BPext = (((()(()))()(()))

o 1 2 3

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53

BPext = (((()(()))()(()))(

o 1 2 3

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53

BPext = (((()(()))()(()))()

0O 1 2 3 4

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2

BPext = (((()(()))()(()))O)(

0O 1 2 3 4

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4

BPext = (((()(()))()(())))

0O 1 2 3 4

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4

BPext = (((()(()))()(0)))) (((

0O 1 2 3 4

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4

BPext = (((()(()))()(()))O)(C0)

0 1 2 3 4 5

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4

BPext = (((()(())) () (()))O) O

0 1 2 3 4 5

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6

BPext = (((()(()))()(()))) (CO)

0 1 2 3 4 5

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6

BPext = (((()(()))()(()))) (CO)

0 1 2 3 4 5

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6

BPext = (((()(()))()(())))OO

0O 1 2 3 4 5 6

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6

BPext = (((()(()))()(()))) COCCO))

0O 1 2 3 4 5 6

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6

BPext = (((()(()))()(0)))) CO O

0O 1 2 3 4 5 6

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6

BPext = (((()(()))()(0)))O)CCOCCO))O)

0O 1 2 3 4 5 6 7

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6 5

BPext = (((()(()))0)(()))O)CCO)OI

0O 1 2 3 4 5 6 7

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6 5

BPext = (((()(()))()(()))O)CCOCCO)O)

0O 1 2 3 4 5 6 7

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6 5

BPext = (((()(())) () (0)))O)CCOCCO)O)C0)

o 1 2 3 4 5 6 7 8

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6 5 5

BPext = (((()(())) () (0)))O)CCOCCO)OC0))

o 1 2 3 4 5 6 7 8

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6 5 5 4

BPext = (((()(()))) (0)))O)CCOCCO)OC0)))

o 1 2 3 4 5 6 7 8

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6 5 54 4

BPext = (((()(()))()(0)))OCCOCCO)OC0))))

o 1 2 3 4 5 6 7 8

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6 5 54 4

BPext = (((()(()))) (0)))OCCOCCO)OC))))I

o 1 2 3 4 5 6 7 8

13 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

BPext = (((()(()))O)C0)))O)CCOCC))O)C0))))0)
0 1 2 3 4 5 6 7 8 9
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

BPext = (((()(()))O)CO)))O)CCO)CCO))) 0)))) O
0 1 2 3 4 5 6 7 8 9
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

BPext = (((()(())))C0)))O)CCO)CCO))) 0)))) () ((
0 1 2 3 4 5 6 7 8 9
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

BPext = (((()(()))O)C0)))O)CCO)CCO))) 0)))) () (((
0 1 2 3 4 5 6 7 8 9
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

BPext = (((()(()))O)C0)))O)CCO)CCO))O)C0)))) O ()
0 1 2 3 4 5 6 7 8 9 10
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

BPext = (((()(()))O)CO)))O)CCO)CCO))O)C0)))) O (C0))
0 1 2 3 4 5 6 7 8 9 10
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6 5 54 4 3 6 6

BPext = (((()(()))O)C0)))O)CCOCCO))O)C0)))) O CCO))(
0 1 2 3 4 5 6 7 8 9 10
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

134 6 6 4 5 53 2 4 4 6 6 5 54 4 3 6 6

BPext = (((()(()))O)CO)))O)CCOCCO))O)C0))))OCC0))0)
0 1 2 3 4 5 6 7 8 9 10 11
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

BPext = (((()(()))O)C0)))O)CCOCCO))O)C0))))OCC0))0))
0 1 2 3 4 5 6 7 8 9 10 11
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

BPext = (((()(()))O)C0)))O)CCOCCO))OC0)))OCCO))0)))
0 1 2 3 4 5 6 7 8 9 10 11
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

(2) Add a leaf to each node

o 1 2 3 4 5 6 7 8 9 10 11

(3) DFS traversal to construct balanced parentheses sequence

BPext = (((()(()))O)CO)))O)CCOCCO))OC0)))OCCO))0))))
0 1 2 3 4 5 6 7 8 9 10 11
13 Simon Gog: Institute of Theoretical Informatics

Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

m The extended Cartesian Tree contains 2n nodes
@ The balanced parentheses sequence consists of 4n bits

® The position of each leaf corresponds to the inorder number of its
parent in the Cartesian tree

® The inorder number corresponds to the array index of the element
m Let excess(i) = rank(i+ 1,1, BPgyt) — rank(i + 1,0, BPgxt)

For0 </ < J < nwe get:

00 rmqa(/y)
01 jpos « select(i+1,), BPey)
02 jpos « select(j+1,), BPey)

03 return rank(rmqzless(ipos, jpos +1), (O, BPext)

14 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (4n+ o(n) bits) ANUT

llllllllllllllllllllllllllllll

® Added leaves are used to navigate to inorder index nodes

m Select on a pattern ,,()” of fixed size can be done in constant time
after precomputing a o(n)-space structure

a Let v be the (i + 1)th leaf node
m Let w be the (j + 1)th leaf node

B rMQga.ss(ipos, joos + 1) is the position of closing parenthesis of the
leaf node z added to LCA(v, w)

a In-order number of LCA(v, w) corresponds to index of minimum in
Ali, j] and can be determined by a rank operation on pattern ,,()”

Next: o(n) data structure to support rmqzress queries on BPey;

15 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n),0(1)) solution (4n+ o(n) bits) AIT

llllllllllllllllllllllllllllll

a Divide the (conceptional) array excess in blocks of size Iog3 n
m 5[0, n/ log® n] stores the minima of the blocks

m Solution #2 for S requires O(—2— - log® n) = o(n) bits

log® n

m Divide each block in subblocks of size % log n

0 Apply again solution #2 on subblocks (" = log? n). |.e. total space
O(2-logn’ -logn’) = O(=2-log?log n) = o(n)

m Lookup table for blocks of size % log nis also in o(n)

logn logn

16 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Adding the leaf nodes enables inorder indexing of the nodes but doubles
the space.

Next: Approach which does not require additional nodes.

17 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Adding the leaf nodes enables inorder indexing of the nodes but doubles
the space.

Next: Approach which does not require additional nodes.
m Cartesian Tree (CT) is a binary tree of n nodes

17 Simon Gog: Institute of Theoretical Informatics
Algorithmen I

Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Adding the leaf nodes enables inorder indexing of the nodes but doubles
the space.

Next: Approach which does not require additional nodes.
m Cartesian Tree (CT) is a binary tree of n nodes
m Transform CT into general tree of n+ 1 nodes

17 Simon Gog: Institute of Theoretical Informatics
Algorithmen I

Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Adding the leaf nodes enables inorder indexing of the nodes but doubles
the space.

Next: Approach which does not require additional nodes.
m Cartesian Tree (CT) is a binary tree of n nodes

m Transform CT into general tree of n+ 1 nodes

o 1 2 3 4 5 6 7T 8 9 10 11

17 Simon Gog: Institute of Theoretical Informatics
Algorithmen I

Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Adding the leaf nodes enables inorder indexing of the nodes but doubles
the space.

Next: Approach which does not require additional nodes.
m Cartesian Tree (CT) is a binary tree of n nodes

m Transform CT into general tree of n+ 1 nodes

17 Simon Gog: Institute of Theoretical Informatics
Algorithmen I

Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

m Add a new root node to the leaf of the original root

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Transformation

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

m Add a new root node to the leaf of the original root

m For each node v (starting at the root) take the right child w, and add
the nodes on the leftmost path from w as children of v

18 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

® Node with inorder i in CT becomes node with preorder i + 1 in the
general tree

19 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

® Node with inorder i in CT becomes node with preorder i + 1 in the
general tree

® So we can identify the node of array element i/ by selecting the
(i 4+ 2)th opening parenthesis in the balanced parentheses sequence
of the general tree (+1 for the added root node, +1 for index shift by

one)

19 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

® Node with inorder i in CT becomes node with preorder i + 1 in the
general tree

® So we can identify the node of array element i/ by selecting the
(i 4+ 2)th opening parenthesis in the balanced parentheses sequence
of the general tree (+1 for the added root node, +1 for index shift by
one)

m Let BP be the balanced parenthes sequence of the general tree

19 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

® Node with inorder i in CT becomes node with preorder i + 1 in the
general tree

® So we can identify the node of array element i/ by selecting the
(i 4+ 2)th opening parenthesis in the balanced parentheses sequence
of the general tree (+1 for the added root node, +1 for index shift by

one)
m Let BP be the balanced parenthes sequence of the general tree

For0 </ < J < nwe get:

00 rmqu(/))
01 ipos < select(i + 2, (, BP)
02 jpos «+ select(j+ 2, (, BP)

03 return rank(rmqgzess(ipos — 1, joos), (, BP) — 1
Where rmgzLess returns the rightmost position of the minimal value.

19 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Proof sketch: Let v and w be the nodes of A|i] and A|j] and z be the LCA
of v and w in the Cartesian Tree. Node v is in the left subtree and w in
the right subtree of z.

Situation in binary tree Situation in general tree

20 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Proof sketch: Let v and w be the nodes of A|i] and A|j] and z be the LCA
of v and w in the Cartesian Tree. Node v is in the left subtree and w in
the right subtree of z.

Situation in binary tree Situation in general tree

o
<% :

ZI 2z z

20 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) AT

llllllllllllllllllllllllllllll

Firstcase: v #zand w # z
® V's opening parenthesis is the green area
® Ww's opening parenthesis is the the red area

a the (righmost) =1 RMQ will return the position p of the closing
parenthesis of z

® Z's opening parenthesis is at position p 4+ 1 by construction

m r = rank(p) — 1 corresponds to the preorder number of z in the
general tree

® which in turns corresponds to the inorder number in CT
m which in turns corresponds to the index of the minimum in Al/,]

21 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) Aﬂ("‘

Second case: v # zand w = Zz:
™ V'S opening parenthesis is the green area
® W’s opening parenthesis is z's opening parenthesis now

m the (righmost) =1 RMQ will return the position p of the closing
parenthesis of z

® Z's opening parenthesis is at position p 4+ 1 by construction

m r = rank(p) — 1 corresponds to the preorder number of z in the
general tree

® which in turns corresponds to the inorder number in CT
m which in turns corresponds to the index of the minimum in Al/,]

22 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) Aﬂ("‘

Third case: v =z and w # z:
® V'S opening parenthesis is z's opening parenthesis now
® Ww’s opening parenthesis is the the red area

m the (righmost) =1 RMQ will return the position p of the closing
parenthesis of z

® Z's opening parenthesis is at position p 4+ 1 by construction

m r = rank(p) — 1 corresponds to the preorder number of z in the
general tree

® which in turns corresponds to the inorder number in CT
m which in turns corresponds to the index of the minimum in Al/,]

23 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

(O(n), O(1)) solution (2n+ o(n) bits) Aﬂ("‘

Third case: v=zand w = z:
® V'S opening parenthesis is z's opening parenthesis now
® W’s opening parenthesis is z's opening parenthesis now

m the (righmost) =1 RMQ will return the position p of the closing
parenthesis of z

® Z's opening parenthesis is at position p 4+ 1 by construction

m r = rank(p) — 1 corresponds to the preorder number of z in the
general tree

® which in turns corresponds to the inorder number in CT
m which in turns corresponds to the index of the minimum in Al/,]

24 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

Conclusion (T

Karlsruhe Institute of Technology

Range Minimum Queries (RMQ)s over an array A can be answered in
constant time after prepocessing a 2n+ o(n) space data structure in
linear time.

Applications:

® Compressed suffix trees

@ Document retrieval

a Weighted query completion
O

25 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

Literature AT

llllllllllllllllllllllllllllll

a M.A. Bender, M. Farach-Colton: The LCA Problem Revisited.
(LATIN 2000)

m K. Sadakane: Compressed Suffix Trees with Full Functionality.
(TCS 2007)

m H. Ferrada, G. Navarro: Improved Range Minimum Queries
(DCC 2016)

26 Simon Gog: Institute of Theoretical Informatics
Algorithmen I Algorithmics

