

Algorithmen II

Simon Gog – gog@kit.edu

Definition

Given an array A of length n containing elements from a totally ordered set. A range minimum query $rmq_A(\ell, r)$ returns the *position* of the minimal element in the sub-array $A[\ell, r]$:

$$rmq_A(\ell, r) = \underset{\ell \le k \le r}{arg \min} A[k]$$

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \end{bmatrix}$$

Definition

Given an array A of length n containing elements from a totally ordered set. A range minimum query $rmq_A(\ell, r)$ returns the *position* of the minimal element in the sub-array $A[\ell, r]$:

$$rmq_A(\ell, r) = \underset{\ell \le k \le r}{arg \min} A[k]$$

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 8 & 2 & 4 & 7 & 1 & 9 & 3 & 5 & 7 & 4 & 6 & 4 & 3 & 1 & 4 & 8 \\ \hline $rmq(2,6) = 4$$$

Definition

Given an array A of length n containing elements from a totally ordered set. A range minimum query $rmq_A(\ell, r)$ returns the *position* of the minimal element in the sub-array $A[\ell, r]$:

$$rmq_A(\ell, r) = \underset{\ell \le k \le r}{arg \min} A[k]$$

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 8 & 2 & 4 & 7 & 1 & 9 & 3 & 5 & 7 & 4 & 6 & 4 & 3 & 1 & 4 & 8 \\ \hline $rmq(5,9) = 6$$$

Definition

Given an array A of length n containing elements from a totally ordered set. A range minimum query $rmq_A(\ell, r)$ returns the *position* of the minimal element in the sub-array $A[\ell, r]$:

$$rmq_A(\ell, r) = \underset{\ell \le k \le r}{arg \min} A[k]$$

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 8 & 2 & 4 & 7 & 1 & 9 & 3 & 5 & 7 & 4 & 6 & 4 & 3 & 1 & 4 & 8 \\ \hline $rmq(0, 15) = 4$$$

Overview

- Notation: Complexity of an algorithm is denoted with $\langle f(n), g(n) \rangle$, where f(n) is preprocessing time and g(n) query time.
- Different solutions:
 - naïve approach 1: $\langle O(n^2), O(1) \rangle$ using $O(n^2)$ words of space
 - naïve approach 2: $\langle O(1), O(n) \rangle$
 - $\langle O(n), O(\log n) \rangle$ using O(n) words of space
 - $(O(n \log n), O(1))$ using $O(n \log n)$ words of space
 - $\langle O(n \log \log n), O(1) \rangle$ using $O(n \log \log n)$ words of space
 - $lackbox{0}(O(n), O(1))$ using O(n) words of space
 - $\langle O(n), O(1) \rangle$ using 4n + o(n) bits of space
 - $\langle O(n), O(1) \rangle$ using 2n + o(n) bits of space

Note

The last two solutions do not require access to the original array A.

- Store index of minimum in binary interval tree.
- Tree has O(n) nodes.
- Follow all nodes which overlap with the query interval but are not fully contained in it (at most 2 per level).
- So not more than 2 log *n* such nodes in total.
- Select all children of these nodes which are fully contained in the query interval.
- From these nodes select the index with minimal value.

$\langle O(n \log n), O(1) \rangle$ - solution #2

- For each item A[i] store an array $M_i[0, \log n]$.
- $M_i[j] = rmq_A(i, i + 2^j 1)$
- Space is $O(n \log n)$ words
- How long does pre-computation take?

Querying

Find the largest k with $2^k \le \ell - r + 1$. Then

$$rmq_{A}(\ell, r) = \begin{cases} M_{i}[k] & \text{if } A[M_{i}[k]] < A[M_{j-2^{k}+1}[k]] \\ M_{j-2^{k}+1}[k] & \text{otherwise} \end{cases}$$

Question: How can k be determined in constant time?

$\langle O(n \log \log n), O(1) \rangle$ solution

- Split A into $t = \frac{n}{\log n}$ blocks $B_0, ..., B_{t-1}$. B spans $O(\log n)$ items of A.
- Create an array S[0, t-1] with $S[i] = min\{x \in B_i\}$
- Build rmq structure #2 for S
- For each block B_i of $O(\log n)$ elements build rmq structure #2
- Total space: $O(n) + O(n \log \log n)$

Querying

- Determine blocks $B_{\ell'}$, $B_{r'}$ which contain ℓ and r
- Calculate $m = rmq_S(\ell' + 1, r' 1)$
- Let k_0 , k_1 , k_2 be the results of the RMQs in blocks ℓ' , r', and m relative to A
- Return arg min_{k_i} $A[k_i]$ for $0 \le k \le 3$

$\langle O(n), O(1) \rangle$ solution

Definition

The Cartesian Tree *C* of an array is defined as follows:

- The root of C is the (leftmost) minimum element of the array and is labeled with its position
- Removing the root splits the array into two pieces
- The left and right children of the root are recursively constructed
 Cartesian trees of the left and right subarray
- C can be constructed in linear time

$\langle O(n), O(1) \rangle$ solution

Solution overview:

- Partition the array into blocks of size s
- Each block corresponds to a Cartesian Tree of size s
- Precompute the s^2 answers for all $\frac{1}{s+1}\binom{2s}{s}$ possible Cartesian Trees of size s in a table P.
- P requires $O(2^{2s}s^2)$ words of space
- For $s = \frac{\log n}{4} P$ requires o(n) words of space
- Build structure #2 for array A' consisting of the block minima of A. This takes O(n) construction time and uses O(n) words of space.

LCA (Lowest Common Ancestor)

Given a rooted tree T of n nodes. For nodes v and w of T the query $LCA_T(v, w)$ returns the *lowest common ancestor* of u and v in T. I.e. the node which is (1) ancestor of v and w and (2) maximizes the distance to the root.

LCA (Lowest Common Ancestor)

Given a rooted tree T of n nodes. For nodes v and w of T the query $LCA_T(v, w)$ returns the *lowest common ancestor* of u and v in T. I.e. the node which is (1) ancestor of v and w and (2) maximizes the distance to the root.

LCA (Lowest Common Ancestor)

Given a rooted tree T of n nodes. For nodes v and w of T the query $LCA_T(v, w)$ returns the *lowest common ancestor* of u and v in T. I.e. the node which is (1) ancestor of v and w and (2) maximizes the distance to the root.

Lemma

If there is a $\langle f(n), g(n) \rangle$ -time solution for RMQ, then there is a $\langle f(2n-1) + O(n), g(2n-1) + O(1) \rangle$ -time solution for LCA.

- Let T be the Cartesian Tree of array A
- Let array E[0, ..., 2n-2] store the nodes visited in an DFS Euler Tour of T
- Let array L[0, ..., 2n-2] store the corresp. levels of the nodes in E
- Let R[0,...,n-1] be an array which stores a representative $R[i] = \min\{j \mid E[j] = i\}$ for each node i of T

$$a b c d e f g h i j k$$

 $R = 0 1 2 4 7 8 9 12 14 15 17$

a b c d e f g h i j k
$$R = 0 1 2 4 7 8 9 12 14 15 17$$

$$LCA_T(v, w) = E[RMQ_L(min(R[v], R[w]), max(R[v], R[w]))]$$

Example

a b c d e f g h i j k
$$R = 0 1 2 4 7 8 9 12 14 15 17$$

$$LCA_T(v, w) = E[RMQ_L(min(R[v], R[w]), max(R[v], R[w]))]$$

Note: $(L[i] - L[i+1]) \in \{-1, +1\}$. So we only need to solve RMQs over arrays with this ± 1 restriction. This is called ± 1 *RMQ*.

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

12

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

12

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

12

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

12

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

12

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(1) Build Cartesian Tree

12

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 1$$
 $A = 4 \ 6 \ 3 \ 5 \ 1 \ 4 \ 6 \ 4 \ 5 \ 2 \ 6 \ 3$

(2) Add a leaf to each node

(2) Add a leaf to each node

(2) Add a leaf to each node

$$BP_{ext} = ($$

(2) Add a leaf to each node

$$BP_{ext} = (($$

(2) Add a leaf to each node

$$BP_{ext} = ((($$

(2) Add a leaf to each node

$$BP_{ext} = ((($$

(2) Add a leaf to each node

$$BP_{ext} = (((()$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()))$$

(2) Add a leaf to each node

$$BP_{ext} = ((((())(($$

(2) Add a leaf to each node

$$BP_{ext} = ((((())(())$$

(2) Add a leaf to each node

$$BP_{ext} = ((((())(()))$$

(2) Add a leaf to each node

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))()(($$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))()(()$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))()(())$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))((()))$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))((()))((()))((()))((()))$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(()))(()))((()))(())$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(()))(()))((()))(($$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))((()))((()))((($$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))((()))((()))((($$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))((()))((()))((()))$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(()))(()))((()))((()))$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))()(()))((())(())$$

(2) Add a leaf to each node

(2) Add a leaf to each node

$$BP_{ext} = ((((()(())))()(()))(((()(()))((()))((()))((())(()))$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(()))(()))((()))((())((()))$$

(2) Add a leaf to each node

(2) Add a leaf to each node

(2) Add a leaf to each node

(2) Add a leaf to each node

$$BP_{ext} = ((((()(()))(()))((()))(((()(())(()))((($$

(2) Add a leaf to each node

(2) Add a leaf to each node

$$BP_{ext} = ((((()(()))(()))((()))(((()(())(()))((()))$$

(2) Add a leaf to each node

$$BP_{ext} = ((((()(()))(()))((()))(((()(())(())))$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$$

(2) Add a leaf to each node

- The extended Cartesian Tree contains 2n nodes
- The balanced parentheses sequence consists of 4*n* bits
- The position of each leaf corresponds to the inorder number of its parent in the Cartesian tree
- The inorder number corresponds to the array index of the element
- Let $excess(i) = rank(i + 1, 1, BP_{ext}) rank(i + 1, 0, BP_{ext})$

For $0 \le i \le j < n$ we get:

```
on \operatorname{rmq}_{A}(i,j)

on \operatorname{ipos} \leftarrow \operatorname{select}(i+1, (), BP_{ext})

on \operatorname{ipos} \leftarrow \operatorname{select}(j+1, (), BP_{ext})

on \operatorname{return} \operatorname{rank}(\operatorname{rmq}_{\operatorname{excess}}^{\pm 1}(\operatorname{ipos}, \operatorname{jpos} + 1), (), BP_{ext})
```


- Added leaves are used to navigate to inorder index nodes
- Select on a pattern "()" of fixed size can be done in constant time after precomputing a o(n)-space structure
- Let v be the (i + 1)th leaf node
- Let w be the (j+1)th leaf node
- $rmq_{excess}^{\pm 1}(ipos, jpos + 1)$ is the position of closing parenthesis of the leaf node z added to LCA(v, w)
- In-order number of LCA(v, w) corresponds to index of minimum in A[i, j] and can be determined by a rank operation on pattern "()"

Next: o(n) data structure to support $rmq_{excess}^{\pm 1}$ queries on BP_{ext}

- Divide the (conceptional) array *excess* in blocks of size log³ n
- $S[0, n/\log^3 n]$ stores the minima of the blocks
- Solution #2 for S requires $O(\frac{n}{\log^3 n} \cdot \log^2 n) = o(n)$ bits
- Divide each block in subblocks of size $\frac{1}{2} \log n$
- Apply again solution #2 on subblocks $(n' = \log^2 n)$. I.e. total space $O(\frac{n}{\log n} \log n' \cdot \log n') = O(\frac{n}{\log n} \log^2 \log n) = o(n)$
- Lookup table for blocks of size $\frac{1}{2} \log n$ is also in o(n)

Observation

Adding the leaf nodes enables inorder indexing of the nodes but doubles the space.

- Cartesian Tree (CT) is a binary tree of n nodes
- Transform CT into general tree of n + 1 nodes

Observation

Adding the leaf nodes enables inorder indexing of the nodes but doubles the space.

- Cartesian Tree (CT) is a binary tree of n nodes
- Transform CT into general tree of n + 1 nodes

Observation

Adding the leaf nodes enables inorder indexing of the nodes but doubles the space.

- Cartesian Tree (CT) is a binary tree of n nodes
- Transform CT into general tree of n+1 nodes

Observation

Adding the leaf nodes enables inorder indexing of the nodes but doubles the space.

- Cartesian Tree (CT) is a binary tree of n nodes
- Transform CT into general tree of n+1 nodes

Observation

Adding the leaf nodes enables inorder indexing of the nodes but doubles the space.

- Cartesian Tree (CT) is a binary tree of n nodes
- Transform CT into general tree of n+1 nodes

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

Transformation

- Add a new root node to the leaf of the original root
- For each node v (starting at the root) take the right child w, and add the nodes on the leftmost path from w as children of v

- Node with inorder i in CT becomes node with preorder i + 1 in the general tree
- So we can identify the node of array element i by selecting the (i+2)th opening parenthesis in the balanced parentheses sequence of the general tree (+1 for the added root node, +1 for index shift by one)
- Let BP be the balanced parenthes sequence of the general tree For $0 \le i \le j < n$ we get:

```
00 \operatorname{rmq}_{A}(i,j)

01 ipos \leftarrow select(i+2, (,BP)

02 ipos \leftarrow select(j+2, (,BP)

03 \operatorname{return} \operatorname{rank}(\operatorname{rmq}_{\operatorname{excess}}^{\pm 1}(ipos-1, jpos), (,BP)-1
```


- Node with inorder i in CT becomes node with preorder i + 1 in the general tree
- So we can identify the node of array element i by selecting the (i+2)th opening parenthesis in the balanced parentheses sequence of the general tree (+1 for the added root node, +1 for index shift by one)
- Let BP be the balanced parenthes sequence of the general tree For $0 \le i \le j < n$ we get:

```
00 \operatorname{rmq}_{A}(i,j)

01 ipos \leftarrow select(i+2, (, BP)

02 ipos \leftarrow select(j+2, (, BP))

03 \operatorname{return} \operatorname{rank}(\operatorname{rmq}_{\operatorname{excess}}^{\pm 1}(ipos-1, jpos), (, BP)-1
```


- Node with inorder i in CT becomes node with preorder i + 1 in the general tree
- So we can identify the node of array element i by selecting the (i+2)th opening parenthesis in the balanced parentheses sequence of the general tree (+1 for the added root node, +1 for index shift by one)
- Let BP be the balanced parenthes sequence of the general tree

```
For 0 \le i \le j < n we get:

00 \operatorname{rmq}_{A}(i,j)

01 ipos \leftarrow select(i+2,(,BP))

02 ipos \leftarrow select(j+2,(,BP))

03 \operatorname{return} \operatorname{rank}(\operatorname{rmq}_{excess}^{\pm 1}(ipos-1,jpos),(,BP)-1
```


- Node with inorder i in CT becomes node with preorder i + 1 in the general tree
- So we can identify the node of array element i by selecting the (i+2)th opening parenthesis in the balanced parentheses sequence of the general tree (+1 for the added root node, +1 for index shift by one)
- Let BP be the balanced parenthes sequence of the general tree For $0 \le i \le j < n$ we get:

```
00 \operatorname{rmq}_{A}(i,j)

01 ipos \leftarrow select(i+2, (, BP)

02 ipos \leftarrow select(j+2, (, BP))

03 \operatorname{return} \operatorname{rank}(\operatorname{rmq}_{\operatorname{excess}}^{\pm 1}(ipos-1, jpos), (, BP)-1
```


Proof sketch: Let v and w be the nodes of A[i] and A[j] and z be the LCA of v and w in the Cartesian Tree. Node v is in the left subtree and w in the right subtree of z.

Situation in binary tree

Situation in general tree

$$(\cdots) \cdots (\cdots) (\cdots) ((\cdots) \cdots (\cdots) (\cdots))$$

Proof sketch: Let v and w be the nodes of A[i] and A[j] and z be the LCA of v and w in the Cartesian Tree. Node v is in the left subtree and w in the right subtree of z.

Situation in binary tree

Situation in general tree

$$(\cdots)\cdots(\cdots)(\cdots)((\cdots)\cdots(\cdots)(\cdots))$$

First case: $v \neq z$ and $w \neq z$

- v's opening parenthesis is the green area
- w's opening parenthesis is the the red area
- the (righmost) $\pm 1RMQ$ will return the position p of the closing parenthesis of z_l
- \mathbf{z} 's opening parenthesis is at position p+1 by construction
- r = rank(p) 1 corresponds to the preorder number of z in the general tree
- which in turns corresponds to the inorder number in CT
- which in turns corresponds to the index of the minimum in A[i,j]

Second case: $v \neq z$ and w = z:

- v's opening parenthesis is the green area
- w's opening parenthesis is z's opening parenthesis now
- the (righmost) $\pm 1RMQ$ will return the position p of the closing parenthesis of z_l
- z's opening parenthesis is at position p+1 by construction
- r = rank(p) 1 corresponds to the preorder number of z in the general tree
- which in turns corresponds to the inorder number in CT
- which in turns corresponds to the index of the minimum in A[i, j]

Third case: v = z and $w \neq z$:

- v's opening parenthesis is z's opening parenthesis now
- w's opening parenthesis is the the red area
- the (righmost) $\pm 1RMQ$ will return the position p of the closing parenthesis of z_l
- z's opening parenthesis is at position p+1 by construction
- r = rank(p) 1 corresponds to the preorder number of z in the general tree
- which in turns corresponds to the inorder number in CT
- which in turns corresponds to the index of the minimum in A[i, j]

Third case: v = z and w = z:

- v's opening parenthesis is z's opening parenthesis now
- w's opening parenthesis is z's opening parenthesis now
- the (righmost) $\pm 1RMQ$ will return the position p of the closing parenthesis of z_l
- z's opening parenthesis is at position p+1 by construction
- r = rank(p) 1 corresponds to the preorder number of z in the general tree
- which in turns corresponds to the inorder number in CT
- which in turns corresponds to the index of the minimum in A[i, j]

Conclusion

Range Minimum Queries (RMQ)s over an array A can be answered in constant time after prepocessing a 2n + o(n) space data structure in linear time.

Applications:

- Compressed suffix trees
- Document retrieval
- Weighted query completion
- ...

Literature

- M.A. Bender, M. Farach-Colton: The LCA Problem Revisited. (LATIN 2000)
- K. Sadakane: Compressed Suffix Trees with Full Functionality. (TCS 2007)
- H. Ferrada, G. Navarro: Improved Range Minimum Queries (DCC 2016)