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Process Concept

• Process Concept

• Process Scheduling

• Operations on Processes

• Interprocess Communication

• Examples of IPC Systems

• Communication in Client-Server Systems
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Process in Memory

• Process - a program in execution;
process execution must progress in
sequential fashion

• A process includes:
• program counter
• registers
• code
• data section
• stack
• heap
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Process State

• As a process executes, it changes state
• new: The process is being created
• running: Instructions are being executed
• waiting: The process is waiting for some event to occur
• ready: The process is waiting to be assigned to a processor
• terminated: The process has finished execution
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Process Creation

• Parent process create children processes, which, in turn create
other processes, forming a tree of processes

• Generally, process identified and managed via a process identifier
(pid)
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Process Control Block (PCB)

Information associated with each
process
• Process state

• Process id

• CPU scheduling information

• Program counter

• CPU registers

• Credentials (uid, gui, ...)

• Accounting information

• Memory-management information

• I/O status information

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 6/81



Process Creation (Cont)

• Parent process create children processes, which, in turn create
other processes, forming a tree of processes

• Resource sharing
• Parent and children share all resources
• Children share subset of parents resources
• Parent and child share no resources

• Execution
• Parent and children execute concurrently
• Parent waits until children terminate

• Address space
• Child duplicate of parent
• Child has a program loaded into it

• UNIX examples
• fork system call creates new process
• exec system call used after a fork to replace the process memory

space with a new program
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Process Termination

• Process executes last statement and asks the operating system
to delete it (exit)
• Output data from child to parent (via wait)
• Process’ resources are deallocated by operating system

• Parent may terminate execution of children processes (abort)
• Child has exceeded allocated resources
• Task assigned to child is no longer required

• If parent is exiting
• Some operating system do not allow child to continue if its parent

terminates ÜAll children terminated - cascading termination
• Child continues Üchild’s state is reported to next available level

process in the hierarchy

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 8/81



Unix Process Life Cycle
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Context Switch

• When CPU switches to another process, the system must save
the state of the old process and load the saved state for the new
process via a context switch

• Context of a process represented in the PCB

• Context-switch time is overhead; the system does no useful work
while switching

• Time dependent on hardware support
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CPU Switch From Process to Process
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Process Scheduling Queues

• Job queue: Set of all processes in the system

• Ready queue: Set of all processes residing in main memory,
ready and waiting to execute

• Device queues: Set of processes waiting for an I/O device

Processes migrate among the various queues
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Representation of Process Scheduling
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Scheduler

• Long-term scheduler (or job scheduler) - selects which processes
should be brought into the ready queu
• Long-term scheduler is invoked very infrequently (seconds, minutes)

Ü(may be slow)
• The long-term scheduler controls the degree of multiprogramming

• Short-term scheduler (or CPU scheduler) - selects which process
should be executed next and allocates CPU
• Short-term scheduler is invoked very frequently (milliseconds)

Ü(must be fast)

• Processes can be described as either:
• I/O-bound process - spends more time doing I/O than

computations, many short CPU bursts
• CPU-bound process - spends more time doing computations; few

very long CPU bursts
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Addition of Medium Term Scheduling
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Interprocess Communication

• Processes within a system may be independent or cooperating

• Cooperating process can affect or be affected by other processes,
including sharing data

• Reasons for cooperating processes:
• Information sharing
• Computation speed-up
• Modularity

• Cooperating processes need interprocess communication (IPC)

• Two models of IPC
• Shared memory
• Message passing
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Communications Models
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Interprocess Communication Message Passing

• Mechanism for processes to communicate and to synchronize
their actions

• Message system - processes communicate with each other
without resorting to shared variables

• IPC facility provides two operations:
• send(message) - message size fixed or variable
• receive(message)

• If P and Q wish to communicate, they need to:
• establish a communication link between them
• exchange messages via send/receive

• Implementation of communication link
• physical (e.g., shared memory, hardware bus)
• logical (e.g., logical properties)
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Link Implementation Questions

• How are links established (direct or via mailbox)?

• Can a link be associated with more than two processes?

• Is a send/receive call blocking or non-blocking?

• What is the capacity of a link (zero, bounded, unbounded)?

• Is the size of a message that the link can accommodate fixed or
variable?

• Is a link unidirectional or bi-directional?
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Direct Communication

• Processes must name each other explicitly:
• send(P, message) - send a message to process P
• receive(Q, message) - receive a message from process Q

• Properties of communication link
• Links are established automatically
• A link is associated with exactly one pair of communicating

processes
• Between each pair there exists exactly one link
• The link may be unidirectional, but is usually bi-directional
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Indirect Communication

• Messages are directed and received from mailboxes (= ports)
• Each mailbox has a unique id
• Processes can communicate only if they share a mailbox

• Properties of communication link
• Link established only if processes share a common mailbox
• A link may be associated with many processes
• Each pair of processes may share several communication links
• Link may be unidirectional or bi-directional

• Operations
• create a new mailbox
• send and receive messages through mailbox
• destroy a mailbox

• Primitives are defined as:
• send(A, message) send a message to mailbox A
• receive(A, message) receive a message from mailbox A
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Indirect Communication II

• Mailbox sharing
• P1, P2, and P3 share mailbox A
• P1, sends; P2 and P3 receive
• Who gets the message?

• Solutions
• Allow a link to be associated with at most two processes
• Allow only one process at a time to execute a receive operation
• Allow the system to select arbitrarily the receiver. Sender is notified

who the receiver was.
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Synchronization

• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous
• Blocking send has the sender block until the message is received
• Blocking receive has the receiver block until a message is available

• Non-blocking is considered asynchronous
• Non-blocking send has the sender send the message and continue
• Non-blocking receive has the receiver receive a valid message or null
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Buffering

• Queue of messages attached to the link; implemented in one of
three ways
• Zero capacity- 0 messages

Sender must wait for receiver (rendezvous)
• Bounded capacity - finite length of n messages

Sender must wait if link full (see UNIX “pipe” and “named pipe”)
• Unbounded capacity - infinite length

Sender never waits
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Examples of IPC Systems - POSIX Shared Memory

• POSIX Shared Memory
• Process first creates shared memory segment

segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

• Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(segment id, NULL, 0);

• Now the process could write to the shared memory
sprintf(shared memory, "Writing to shared memory");

• When done a process can detach the shared memory from its
address space
shmdt(shared memory);

• Finally, a shared-memory segment can be removed from the system
shmctl(segment id, IPC RMID, NULL);
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Examples of IPC Systems - Mach, OS X

• Mach communication is message based
• Even system calls are messages
• Each task gets two initial mailboxes at creation - Kernel and Notify
• Only three system calls needed for message transfer

msg send(), msg receive(), msg rpc()

• Mailboxes needed for communication, created via
port allocate()

• Maximal capacity are 8 messages
• Just one process is owner of the port and allowd to receive

messages (right can be transferred)
• Flexible sync. options: blocking, time-out, non-blocking
• Mailbox-Set allows to receive from multiple mailboxes
• port status() reports the number of messages in a mailbox
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Communications in Client-Server Systems

• Sockets
• A socket is defined as an endpoint for communication
• Concatenation of IP address and port
• The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
• Communication consists between a pair of sockets

• Remote Procedure Calls
• Remote procedure call (RPC) abstracts procedure calls between

processes on networked systems
• Stubs client-side proxy for the actual procedure on the server
• The client-side stub locates the server and marshalls the parameters

(engl. marshalling = dt. Zugbildung)
• The server-side stub receives this message, unpacks the marshalled

parameters, and performs the procedure on the server

• Remote Method Invocation (Java)
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Socket Communication
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Execution of RPC
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Marshalling Parameters
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Remote Method Invocation

• Remote Method Invocation (RMI) is a Java mechanism similar
to RPCs

• RMI allows a Java program on one machine to invoke a method
on a remote object
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Single and Multithreaded Processes
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Benefits

• Responsiveness

• Resource Sharing

• Economy

• Scalability
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Multicore Programming

• Multicore systems putting pressure on programmers, challenges
include
• Dividing activities
• Balance
• Data splitting
• Data dependency
• Testing and debugging

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 34/81



Multithreaded Server Architecture
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Thread Execution on Single- vs. Multi-Core Systems

• Concurrent Execution on a Single-core System

• Parallel Execution on a Multicore System
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User Threads

• Thread management done by user-level threads library

• Three primary thread libraries:
• POSIX Pthreads
• Win32 threads
• Java threads
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Kernel Threads

• Supported by the Kernel

• Examples
• Windows XP/Vista/W7
• Linux
• Solaris
• Mac OS X
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Many-to-One (M x 1) Model

• Many user threads mapped to single kernel thread

• Examples:
• Solaris Green Threads
• GNU Portable Threads

• Pros:
• Fast thread management

operations (up 100 times)
• Flexible scheduling policy
• Saving of system resources
• Concurrent prog. model that

can be transferred to 1x1 or
MxN without modification

• Cons:
• Whole process blocks if only

one user thread blocks
• Profiling and debugging is

critical
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One-to-One (1 x 1)Model

• Each user-level thread maps to kernel thread

• Examples:
• Windows XP/Vista/W7
• Linux
• Solaris 9 and later

• Pros:
• Real parallelism
• Profiling and debugging is

possible

• Cons:
• Overhead for kernel policy
• System memory intensive

(TCB, stack)
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Many-to-Many (M x N) Model

• Allows many user level threads to be mapped to many kernel
threads

• OS can create a “sufficient” number of kernel threads

• Examples:
• Solaris prior to version 9
• Windows NT/2000 with the ThreadFiber package

• Pros:
• Flexible scheduling policy
• Efficient execution
• Deadlock recovery by kernel

thread creation

• Cons:
• Two-level scheduling
• Profiling and debugging critical
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Two-Level Model

• Similar to M:M, except that it allows a user thread to be bound
to kernel thread

• Examples:
• HP-UX
• Solaris 8 and earlier
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Thread Libraries

• Thread library provides programmer with API for creating and
managing threads

• Two primary ways of implementing
• Library entirely in user space
• Kernel-level library supported by the OS

• Pthreads
• May be provided either as user-level or kernel-level
• A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization
• API specifies behavior of the thread library, implementation is up to

development of the library
• Common in UNIX operating systems (Solaris, Linux, Mac OS X)
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Threading Issues I

• Semantics of fork() and exec() system calls
• Does fork() duplicate only the calling thread or all threads?

• Thread cancellation of target thread
• Asynchronous cancellation terminates the target thread immediately
• Deferred cancellation allows the target thread to periodically check

if it should be cancelled

• Signal Handling
• Signals are used in UNIX systems to notify a process that a

particular event has occurred
• A signal handler is used to process signals

• Signal is generated by particular event
• Signal is delivered to a process
• Signal is handled

• Options:
• Deliver the signal to the thread to which the signal applies
• Deliver the signal to every thread in the process
• Deliver the signal to certain threads in the process
• Assign a specific thread to receive all signals for the process
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Threading Issues II

• Thread Pools
• Create a number of threads in a pool where they await work
• Advantages:

• Usually slightly faster to service a request with an existing thread than
create a new thread

• Allows the number of threads in the application(s) to be bound to the
size of the pool

• Thread Specific Data
• Allows each thread to have its own copy of data
• Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)
• Scheduler Activations

• Both M:M and Two-level models require communication to
maintain the appropriate number of kernel threads allocated to the
application

• Scheduler activations provide upcalls - a communication mechanism
from the kernel to the thread library

• This communication allows an application to maintain the correct
number of kernel threads
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Process Scheduling

• Basic Concepts

• Scheduling Criteria

• Scheduling Policies

• Multi-Processor Scheduling

• OS Scheduler Examples

• Scheduling Evaluation
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CPU - I/O Burst Cycle

• Process execution consists of a cycle of CPU execution and I/O
wait
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CPU Burst Distribution
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The Benefit of Multiprogramming

• Maximum CPU utilization obtained with multiprogramming
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CPU Scheduler

• Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

• CPU scheduling decisions may take place when a process:

1 Switches from running to waiting state
2 Switches from running to ready state
3 Switches from waiting to ready
4 Terminates

• Scheduling under 1 and 4 is nonpreemptive

• All other scheduling is preemptive
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Dispatcher

• Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:
• switching context
• switching to user mode
• jumping to the proper location in the user program to restart that

program

• Dispatch latency - time it takes for the dispatcher to stop one
process and start another running
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Scheduling Criteria

• CPU utilization - keep the CPU as busy as possible

• Throughput - # of processes that complete their execution per
time unit

• Turnaround time - amount of time to execute a particular
process

• Waiting time - amount of time a process has been waiting in the
ready queue

• Response time - amount of time it takes from when a request
was submitted until the first response is produced (for
time-sharing environment)
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Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time
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First-Come, First-Served (FCFS) Scheduling I

• Example:
Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1, P2, P3

The Gantt Chart for the schedule is:

• Waiting time for P1 = 0 ; P2 = 24 ; P3 = 27

• Average waiting time: (0 + 24 + 27)/3 = 17
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First-Come, First-Served (FCFS) Scheduling II

• Example:
Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P2, P3, P1

The Gantt Chart for the schedule is:

• Waiting time for P1 = 6 ; P2 = 0 ; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case

• Convoy effect - short process behind long process
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Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU burst.
Use these lengths to schedule the process with the shortest time

• SJF is optimal - gives minimum average waiting time for a given
set of processes
• The difficulty is knowing the length of the next CPU request

• Example:
Process Burst Time

P1 6

P2 8

P3 7

P4 3

• SJF scheduling chart:

• Average waiting time: (3 + 16 + 9 + 0)/4 = 7
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Estimating the Length of Next CPU Burst

• Can be done by using the length of previous CPU bursts, using
exponential averaging

1 tn = actual length of nth CPU burst
2 τn+1 = predicted value for the next CPU burst
3 α, 0 ≤ α ≤
4 Define: τn+1 = αtn + (1− α)τn

• Example: α = 0.5
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Preemptive Shortest-Job-First (PSJF) Scheduling

• PSJF = shortest-remaining-time-first

• Example:
Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

• SJF scheduling chart:

• Average waiting time:
[(10− 1) + (1− 1) + (17− 2) + (5− 3)]/4 = 6.5
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Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)
• Preemptive
• Non-preemptive

• SJF is a priority scheduling where priority is the predicted next
CPU burst time

• Problem: Starvation - low priority processes may never execute

• Solution: Aging- as time progresses increase the priority of the
process
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Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

• Overhead
• q large ⇒ FIFO ⇒ low number of context switches
• q small ⇒ many context switches ⇒ q must be large with respect

to context switch
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Round Robin II

• Example: RR with TQ 4
Process Burst Time

P1 24

P2 3

P3 3

• Gantt chart:

• Typically, higher average turnaround than SJF, but better
response
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Time Quantum and Context Switch Time
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Turnaround Time Varies With The Time Quantum
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Multilevel Queue

• Ready queue is partitioned into separate queues:
(e.g., foreground=interactive) and background=batch)

• Each queue has its own scheduling algorithm
• foreground - RR
• background - FCFS

• Scheduling must be done between the queues
• Fixed priority scheduling; (i.e., serve all from foreground then from

background) ⇒ Possibility of starvation
• Time slice - each queue gets a certain amount of CPU time which it

can schedule amongst its processes; i.e., 80% RR, 20% to FCFS
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Multilevel Queue II
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Round Robin: I/O vs. CPU-Bound Processes

• An I/O bound process uses the CPU for a time less than the
time quantum and then is blocked waiting for I/O

• A CPU-bound process can run for all its time slice and is put
back into the ready queue (thus getting in front of blocked
processes)

Ü Virtual Round Robin
• When an I/O has completed, the blocked process is moved to an

auxiliary queue which gets preference over the main ready queue
• A process dispatched from the auxiliary queue runs no longer than

the basic time quantum minus the time spent running since it was
selected from the ready queue
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Virtual Round Robin
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Multilevel Feedback (MLFB) Queue

• A process can move between the various queues
• Aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by the following
parameters:
• number of queues
• scheduling algorithms for each queue
• method used to determine when to upgrade a process
• method used to determine when to demote a process
• method used to determine which queue a process will enter when

that process needs service
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Multilevel Feedback (MLFB) Queue II

• Example with three queues:

• Q0 - RR time quantum 8 ms

• Q1 - RR time quantum 16 ms

• Q2 - FCFS

• Scheduling:
• A new job enters queue Q0 which is served RR. When it gains CPU,

job receives 8 milliseconds. If it does not finish in 8 milliseconds, job
is moved to queue Q1.

• At Q1 job is again served RR and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q2.
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Lottery Scheduling

• Give each process some lottery tickets

• On each time slice randomly pick a ticket (lottery)

• Ticket owner gets CPU for one time slice

• Scheduling behavior is dependent on number of tickets a process
owns

• How to assign tickets?
• To approximate SRTF, short runners get more, long runners get

fewer
• To avoid starvation, every job gets at least one ticket (everyone

makes progress)

• Advantage over strict priority scheduling: behaves gracefully as
load changes
• Adding or deleting a process affects all others proportionally,

independent of how many tickets each one possesses
• Processes can hand over tickets to other procs, e.g. a client to a

server (called ticket donation)
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Multiple-Processor Scheduling

• CPU schedulingis more complex when multiple CPUs are
available

• Homogeneous processors within a multiprocessor

• Asymmetric multiprocessing - only one processor accesses the
system data structures, alleviating the need for data sharing

• Symmetric multiprocessing (SMP) - each processor is
self-scheduling, all processes in common ready queue, or each
has its own private queue of ready processes

• Processor affinity - process has affinity for processor on which it
is currently running
• soft affinity
• hard affinity
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NUMA Scheduling
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SMT und Multi-Core Scheduling

• Recent trend to place multiple processor cores on same physical
chip

• Faster and consume less power

• Multiple threads per core (SMT) also growing
• Takes advantage of memory stall to make progress on another

thread while memory retrieve happens
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Solaris Scheduling

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Management 74/81



Solaris TS Scheduler
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Linux O(1) Scheduler
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Linux O(1) Task Arrays

• see “Understanding the Linux 2.6.8.1 CPU Scheduler” by Josh
Aas, Feb. 2005
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Deterministic Modelling

• Predetermined Workload

• Deterministic scheduling algorithm

Ü Formula or concrete numbers that evaluate the performance of a
scheduling policy for that workload
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Queueing Models

• Based on the foundations of Queueing Theory

• System is modelled as a network of queues

• Activities (CPU and I/O) are modelled with distribution of
arrival time, execution time, . . . (often unrealistic)

• Queueing-network analysis determines the average throughput,
utilization, queue length, waiting time, . . .

• Little’s formula: n = λ ∗W (valid for all policies and
distributions)
• n: average queue length
• λ: average arrival rate
• W : average waiting time per process in the queue
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Simulations
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Implementation and Measurement

• Implementation with “real” operating system sources

• Measurement with “typical” workload on “real” hardware

Ü Minor changes in the execution environment can have dramatic
impact on the outcome of measurements
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